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SoME HisToRICAL REMARKS ON THE USE OF

NoN-LINEAR VIScoSITIES IN GEOPRYSICAL MODELS
Joseph Smagorinsky

EXTENDED ABSTRACT

When Phillips did his first extended quasi-geostrophic general circulation
numerical integrations in 1956, he encountered large-scale filamentation of
the vortex lines reflecting a piling-up of kinetic energy at the smallest
resolvable scales. A subsequent analysis by Phillips (1959) revealed this to
be the result of a non-linear cascade from large scales which could be
stabilized by periodically eliminating all components with wavelengths smaller
than 4 times the grid size. Von Neumann suggested that his and Richtmeyer’s
computational experisnce with one-dimensional shock waves (1950} indicated the
value of a non-linear artificial viscosity. Charney and Phillips (personal
communication) successfully adapted a 2-dimensional version of the idea, with
viscosity proportional to the magnitude of the lateral deformation in some
trial quasi-geostrophic integrations.

Smagorinsky, in the early 1960s (in an unpublished manuscript) set out to
rationalize the use of a non-linear viscosity by appealing to modern
turbulence theory, as a basis for long integrations with the primitive
equations. The idea was to arrive at a formulation of the turbulent transfer
in the grid-size scales assuming the 3-dimensional isotropic -5/3 similarity
Taw of Kolmogoroff and Heisenberg was valid. If this were indeed an inertial
subrange, then energy at subgrid scales would be removed at the same rate that
it was being cascaded from the larger explicitly treated scales, thereby

preserving the shape of the spectrum in the vicinity of the smallast
resoivabie scales.

As has been usual, it was assumed that the formalisms of elasticity theory
were a valid analogue, and the requirement of reflective symmetry and of axial
symmetry about the vartical axis reduced the problem to one of 12 non-zero




coefficients of which 3 are independent. The further constraint of quasi-
hydrostatic equilibrium with the side condition that the energy dissipation be
positive-definite reduces the number of arbitrary coefficients in the 5

"

remaining stress equations to 2.

Bass’ (1949} solution of the Kolmogoroff-Heisenberg integral equations in
the inertial subrange, taken together with the stress equations, yields
expressions for the 2 turbulent viscosities due to horizontal and vertical
strains of the horizontal component of the wind. In particular, the
horizontal exchange coefficient is proportional to the magnitude of the
horizontal deformation, resulting in a non-linear eddy viscosity.

The proportionality is through a characteristic Tength squared, which was
assumed to be proportional to the local grid-size. This then determined the
scale at which the flow transitions from being explicitly resolved to being
treated statistically at subgrid scales. The non-dimensional proportionality
constant was interpreted to be closely related te the Kérmdn constant. Since
that time, Lilly (1967) and Deardorff (1971) related the non-dimensional
constant to the Kolmogoroff constant. In particular, Deardorff suggested that
the characteristic length is, in turn, proportional to the integral scale of
turbulence corresponding to the truncated finite-difference spectrum. That
is, in Lilly’s words, the corresponding wave number is the largest
unambiguously representable on a finite difference mesh. With this, the
constants defined by different authors can be related to each other, with only
one experimental determination (with the exception of Yakhot and Orszag, 1986)
necessary for each characteristic type of flow.

One must come to grips with the fact that the Heisenberg theory is for 3-
dimensionally isotropic flow and we, at grid scale, are concerned with quasi-
two-dimensional, quasi-static flow, but which has a physically significant
third dimensional component. Kraichnan (1971) and others have pointed out
that the Heisenberg functional form of the turbulence spectrum can be assumed
valid for 2-dimensional turbulence, provided the Koimogoroff constant is taken
to be substantially larger (6.7 instead of 1.4). Also, Deardorff (1985)
concluded that flows dominated by mean shear required a larger Kolmogoroff

constant (that is the turbulence behaves more 2-dimensionally) than ordinary
3-dimensional turbulence.

Over the past two decades there has been a great move to the use of
spectral methods for global atmospheric modeling, and a corresponding move
aw2y from the use of non-linear viscosities. On the other hand, oceanographic




application still employ finite difference methods to deal with irregular
boundaries. Most recently, however, the promise of parallel computer
architecture and the advantages of semi-lagrangian advective schemes may lure
large-scale atmospheric modelers back to finite-difference models and non-
Tinear viscosities.
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Contribution of Two-point Closure to Large Eddy Simulatious
by J. R. Herring
National Center for Atmospheric Research,* Boulder, Colorado 80307

Abstract

Although LES seems an inevitable tool for high Reynolds number flows, its usual
derivation is obscured by the intrinsic unpredictability of turbulent flows. This problem
is illustrated by considering the attempt to derive LES via the two-point closure form of
the statistical theory of turbulence. In this context, we argue that any precise distinction
between large-scale deterministic LES scales and statistically specified “sub-grid scales” is
lost after the predictability time, unless the distinction corresponds to a stable statistical
symmetry of the problem (see e.g., Fox and Lilly, 1972; Herring, 1979). After describing
some simple two-point closure procedures (principally the test field model (TFM), Kraich-
nan, 1971), we note that such methods may be used to place bounds on LES-computed
velocity fields in the sense that the flow’s variances computed on a compressed range of
scales [0,kzEs] are the same as would be computed on the full range of scales, [0, 0],
provided the closure is accurate. This alternate point of view avoids the predictability
dilemma noted above, but it also detaches the LES flow from the real flow. We next
present—in summary form—current information on the accuracy of statistical theories,
principaily the TFM and related theories. We note that although for three-dimensional
turbulence the accuracy of such a theory seems promising, in two-dimensions the devel-
opment of isolated compact vortices (McWilliams, 1984) presents a serious and as yet
unanswered challenge to two-point closures. As used in LES calculations, such methods
are represcntable as eddy viscosities and conductivities (see e.g., Kraichnan, 1976; Lesieur,
1987), and some results are briefly discussed for isotropic and hormnogeneous flows diawn
in part from Chollet (1983).

The Leonard term (Leonard, 1974; Leonard and Patterson, 1977) that appear because
T U # un (overlines denoting filtering with respect to an as yet arbitrary filter shape) is
next considered. We note that the spectral form of two-point closures may be used to
evaluate this term in a simple way, and we discuss its importance, particularly at large
Reynolds numbers for which DNS methods are difficult.

Next, we consider the effects of relaxing the isotropic constraint and compare how
the more general anisotropic formalism differ< from the standard Smagorinsky (1963) pro-
cedure, in which the eddy viscosity is computed solely in terms of the large-eddy strain.
Such a step is necessary in order to discern a possible dependence of eddy coefficients on
vorticity as well as strain. We consider—in this connection-——the possible role of the second
invariant of the strain in characterizing eddy viscosity.

Next we describe the application of these ideas to two-dimensional and quasi-
geostrophic turbulence. Here, the characterization of the eddy viscosity (based on two-
point closure) is simpler, and we are able to delineate the role of strain and vorticity in

the composition of eddy viscosily in « ~ieaner way.

* The National Center for Atmospheric Research is sponsored by the National Science
Foundation.
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APPLICATION OF STATISTICAL MECHANICS TO TURBULENCE MODELING
{Extended Abstract)

Alexandre J. Chorin
Department of Mathematics
University of Californa
Berkeley, CA 94720

Introduction. The goal of large eddy simulation in turbulence theory is the
replacement of descriptions of turbulent flow that contain many unknowns to
be computed by descriptions with fewer unknowns {hopefully, many fewer).
Methods for performing such reductions are well known in statistical
mechanics, where they are known as renormalization group techniques (with
related techniques, such as adiabatic elimination procedures, being used, for
example, in the context of Fokker-Planck equations). Our goal here is to
discuss the application of a <class of real-space renormalization group

techniques to a vortical description of incompressible turbulence.

Heuristics. We begin by describing heurislic forms of these renormalization
techniques. Suppose the flow is described by a collection of vortex elements
{blobs, filaments, or segments). Allow the flow to evolve in time. Vortex lines
stretch, and the vortex description becomes ever more expensive. As the
vortex lines stretch they fold (this is a consequence of conservation of
energy, and a manifestation of the Kosterlitz-Thouless transition mechanism in
vortex theory). The support of the vorticity shrinks, and thus tight hairpins
must form. It is natural to try to erase tightly wound counterrotlating
elements in such hairpins, and several algorithms for doing this have been
propoged. I{ has been found in particular that any deviation from the sexact
self-consistency condition div curl u = 0 leads to a rapid accumulation of

errors, and thus the best hairpin removal should be attached to a vortex




method where the elements are closed filaments (the allernative of nonlocal
projected elements is hard to use). The removsl is then equivalent to a limit
on the curvaiure of the computational voriices as well as to the erasure of all
elements whose scale (as measured by the corresponding radius of curvature)
is smaller than a predetermined small parameter h. Numerical examples will be
displayed.

The major open questions with this kind of removal zlgorithms are their
theoretical justification and the existence of improvements — for example,
hairpin removal leaves the sirength (= circulation) of the vorlices fixed; one is
used in quantum renormalization schemes to the renormalization of the
coupling constanits (here, the circulation squared). One has to imbed the
ad-hoc removal salgorithm within a systemsatic rescaling procedure. The next

section will provide such an imbedding.

Equiiibrium statistical mechanics of vortex filaments. Consider a collection of

vortex filaments in thermal equilibrium (enforced by limiling their stretching).
The translation-invariant ensemble of such filaments that has maximum entropy
has a Kolmogorov spectrum. The quasi-equilibrium (= statistically steady
state) ottained by perturbing such an equilibrium through removal of energy
at small scales and stirring at large scales is near equilibruim if the entropy
is large. These facts do not contradict the fact that if a collection of vortices
15 allowed to evolve without viscosity, energy removal at smali scales, stirring,
or no reconnection, no thermal equilibrium can be reached. These remarks
make il plausible that the epproprisie renormalization theory for the small
scales is an equilibrium theory. izalion squaiions can be sei up,
based on an expension in the chemical polential; to first order, they lead to a

constant rativ of coupling constant to temperature, i.e. to the hairpin removai

algorithm.
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Field Theoretic Approach to LES Models
Steven A. Orszag

Applied and Computational Mathematics
Princeton University
Princeton, New Jersey 08544-1000

ABSTRACT

In this talk a survey will be given of the basis of large-eddy
simulations of turbulent flow. Recent work based on renormalization
group ideas that give a rational basis for SGS viscosities will be
described. Applications to complex shear flows and compressible
turbulence will be given. Finally, an assessment wili be given of
future prospects of LES in light of complex engineering modeling
requirements at high Reynolds numbers.
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Models for Use in Large Eddy Simulation

Joel H. Ferziger
Department of Mechanical Engineering,
Stanford University, Stanford, CA

The need to use subgrid scale (SGS) models in large eddy simulation (LES)
needs no justification. For relatively simple low Reynolds number flows, the
quality of the model is not very important; only a small fraction of the
energy resides in the small scales and error in the predicted distribution of
the SGS energy or Reynolds stress do no great harm to the overall quality of
the simulation. It suffices that the model dissipates the required amount of
energy. The Smagorinsky eddy viscosity model is adequate to this task and
nothing more is reguired. This model can be derived by a number of
methods--heuristics, spectral theories, renormalization group (RNG) theory,
etc.

For more complex or higher Reynolds number flows, model quality becomes
more important. Often the spectra at the highest resolved wavenumbers are not
well predicted by the Smagorinsky model. A number of suggested improvements
have been put forward. For high Reynolds number homcgeneous turbulence, eddy
viscosities which affect the small scales more strongly than Smagorinsky’s
(spectral eddy viscosities) have been suggested and applied successfully. The
scale similarity model, although originally intended as a substitute for
Smagorinsky’s model, in fact transfers energy from the smaliest rescived
scales to larger scales and thereby accomplishes the same effect. Finally,
treatment of the SGS by spectral theory has been done successfully, but is
costly. An cbvious avenue of improvement, using partial differential
equations to describe the SGS turbulence has been tried only a few times with
limited success.

Users of the Smagorinsky model have been plagued by the need to change
the model parameter according to the type of flow; the choice of length scale
in highly anisotropic turbulence (which usually implies highly anisotropic
grids) has been another issue. These problems appear to be circumvented by a
recent suggestion of Germano and coworkers. In this methed, the large eddy
simulated field is high pass filtered to give the smallest scale field which
is treated as a stand-in for the unrepresented fields. From this field, the
model parameter can be determinad. Direct application of this method was
shown by Piomelli et ai (see the paper by Moin in this conference) to be
unstable; fortunately, it is readily stabilized by introducing averaging. The
parameter then self-consistently determined, eliminating the need for

reformulation each time the flow is modified. This method appears to have
great promise. .

Approximaie boundary conditions to be used at walls and other boundaries
is another critical issue. The most recent advances in this field were made
by Piomeili who suggested two medified law-of-the-wall coaditions for smooth
walils; rough walis can probably be treated in a similar manner. However, here
is still a need for conditions that are able to deal with flow separation and
reattachment and three dimensionality.
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Finally, we recall that 'extra strains’ have significant effects on
turbulent flows. The question is whether they affect the small scales of the
turbulence strongly enough to requiie modification of the model. Not much is
presently known about this issue. It is the author’s opinion that phenomena
that strongly depend on the behavior of the small scales will need to be
accounted for in the model while those whose effects are felt primarily in the
large scales can probably be treated with the models described above. Examples
of phenomena of the former type are shock waves (and perhaps compressibility

in general) and combustion while stratification, rotation and curvature may
fall in the Tatter category.




Renormalization Group for LES of Compressible Flows and Premixed
Turbulent Comk .tion

Victor Yakhot

Applied and Computational Mathematics
Princeton University
Princeton, New Jersey 08544-1000

ABSTRACT

I will present a systematic derivation of the renormalization group
for compressible turbulent flows and turbulent combustion. The

method involves elimination of the small-scale velocity fluctuations
and derivation of the effective transport coefficients. The most
striking effect predicted by the method is the scale-dependence of
the effective speed of sound which reduces the effective Mach number.
Thus, we believe that only weak eddy shocklets can exist in the
three-dimensional isotropic turbulence even at arbitrarily high

Mach number. The sub-grid model for premixed flame front is

derived and used for LES of the front propagation in turbulent channel
flow.
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Abstract

In the review of the recent computational work on turbulent reacting flows
Drummond!, Oran and Boris? and Givi® indicate the need for further devel-
opment in both the methodology and the implementation of DNS and LES. The
results of previous and ongoing works towards the developments of advanced
numerical algorithms for the simulations of reacting turbulent fields have
been successful, and we have been using these tools as a means of under-

standing some of the interesting intricate flow dynamics in reactive sys-
tems.

It is now a well-established fact that foreseeable developments of ad-
vanced computational facilities, will not be sufficient to relax the re-
striction of DNS to flows having small to moderate variations of the char-
acteristic length and time scales®*®. Hence the boundaries of applicabil-
ity of DNS are, and will continue to be, somewhat restricted. Neverthe-
less, within its domain, DNS can be used to enhance our understanding of
the physics of chemically reacting turbulent flows by (1) providing spe-
cific information concerning the detailed structures of the flow, and (2)
providing a qudntitative basis for evaluating the performance of turbu-
lence closures. It is now proven that DNS has been an outstanding tool

for such studies and, in addition, has provided useful guidelines for fu-
ture investigations.

LES appear to provide a good alternative to DNS for computing flows having
ranges of parameters similar to those encountered in practical systems®>S,
The approach based or LES has a particular advantage over the Reynolds-
averaged procedures in that only the effects of small-scale turbulence mo-
tion have to be modelled. Therefore, the construction of accurate ‘‘sub-
grid scale’’ closures is an important task in its implementation. The ex-
tensive experience gained during the past two decades in constructing tur-
bulence models for the Reynolds-averaged equations of turbulent combustion
should prove to be quite useful in the development of these closures. A

major advantass

sred by LES 1s that, subgrid closure modeling can be
substantially simplified by performing computations over grids of differ-
ent size™®7. In this way, the performance of a model on coarse grids can

be directly evaluated by comparing its predictions with thaose obtained on

1




fine grids. This procedure has been followed in previous works®’ and the
simulated results have often produced satisfactory subgrid closures. All
the efforts to-date, however, have been toward constructing closures for

non-reacting flows.

Jur efforts, to date, have been mainly concentrated on using the data ob-
tained by DNS for the purpose of validating models for turbulence model-
ing and subgrid closure. In both tasks, the basic frame of closure is
based on probability density functions (PDF’s) of scalar variables. The
PDF methods have proven very useful in the analytical treatment of re-
acting turbulent fields®®, and it is anticipated that their implementa-
tions would be useful for treating the subgrid fluctuations in turbulent
reacting flows. In the presentations, we will provide a brief review of
our previous findings in using the DNS data for validating PDF methods in
turbulent combustion modeling, and we will present the results of some of
our ongoing efforts in using PDF methods for the treatment of fluctuations
within the subgrid in LES. In both cases, we limit the discussions to the
analysis of homogeneous turbulence, since in this case all the complica-
tions associated with spatial inhomogeneity are removed. The ideas devel-
oped here, however, can be used for the subgrid closure in inhomogeneous
flows, such as reacting mixing layers’®, and more complex flows. In this
abstract, we limit the discussion to the extent used in LES modeling.

In efforts related to LES, we have used the data base obtained by DNS for
a detailed study of the PDF characteristics within the subgrid. This data
base is generated by direct simulation of an initially unpremixed homo-
geneous turbulent flew under the influence of a passive chemical reaction
of the type A+ B — Products. As an inivial effort, it is assumed that
the chemistry is infinitely fast (i.e. Damkohler Number — co0); therefore
a flame sheet approximation is employed. With this approximation, the
transport of an inert scalar quantity is sufficient to portray the statis-
tical behavior of the species field. Simulations are performed for both
two- and three-dimensional homogeneous flows for several values of +hs
turbulent Hach number. A spectral-collocation algorithm based on Fourier
expansion function’ is employed in the numerical simulations. The fluid
obeys the Navier-Stokes equations for an ideal gas. Periodic boundary
conditions are employed in all directions for both two dimensional and

2




Eos

S

e

three dimensional simulations. A 256 x 256 uniform collocation grids was
used for two dimensional calculations. The number of collocation points

for the three dimensional simulations was 128 x 128 x 128.

A range of initial fluctuating Mach number was considered to study the ef-
fect of compressibility on mixing and chemical reaction. For the purpose
of flow visualization, sample two dimensional contour plots of the pres-
sure field are prasented in Figs. 1 and 2. Figure 1 represents a typi-
cal pressure contour plot for a low compressible case and Fig. 2 corre-
sponds to a high compressible case. An interesting feature displayed in
Fig. 1 is the presence of the shocklets. A two dimensional contour plot
of species concentration for a high compressible case is shown in Fig. 3.
The normalized time corresponding to this case is such that the effect of

initial conditions is no longer substantial.

The DNS data base obtained is used to study the behavior of the probabil-
ity density functions (PDF’s) of scalar properties within the subgrid.
After the generation of the data base on the fine grid, the results are
statistically analyzed within an ensemble of these grids to describe the
large scale conduct on the coarse grid. The ratio of the mesh spacings
(resolution) provided by the coarse and the fine grids is a measure of the
size of the filter which would be used in LES. At initial and intermedi-
ate computational times the pdf of inert scalar within the subgrid can be
approximated with the class of two-parameter model distributions, and at
final times the pdf asymptotically adopts a Gaussian distribution. This
had been already surmised in incompressible flew simulations, as previous
DNS results!l!? had suggested. Howaver, in present simulations this be-
havior is observed both in incompressible flows and in compressible flows
dominated with shocklets. This cbservation is somewhat useful since it
suggests that in subgrid modeling of an inert scalar property, tha infor-

mation on the first two moments of the variable is enough to parametrize
the pdf within the subgrid.

With the knowledge gained to date, it is anticipated that the approach
based on pdf parametrization based on its first two moments may prove ser-
viceable for turbulent combustion simulations. The approach based on the

solution of a transport equation for pdf, however, may not be practical




at this stage. An estimate of computational requirements indicates that
the cost associated with LES (a semi-deterministic solution of large scale
with a probabilistic description of small scale by solving a pdf transport
equation) is of the same order as that of DNS on the fine grids, unless

the ratio of the fine to coarse grid is large.

Our ongoing investigation is concerned with investigating the effects of
finite Damkohler number, which is most appropriate for pdf modeling, and
also on including the influence of the heat release. The statistical anal-
yses ara also being done for differsnt flow types and for various filter
wvidths. We are also at the final stages of developing a parametrized PDF
model for the closure modeling of unpremixed homogeneous reacting turbu-
lent flows.
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Figure 1. Contour plot of pressure for low compressible case.
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Figure 2. Contour plot of pressure for high compressible case.

Figure 3. Contour plot of species A concentration for high compressible case.
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STOCHASTIC BACKSCATTER IN A SUBGRID-SCALE MODEL:
3D COMPRESSIBLE FLOWS
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ABSTRACT

A subgrid-scale model with stochastic backscatter supplementing the
well-known Smagorinsky eddy viscosity is formulated in the context of a
three-dimensional (3D) ;arge eddy simulation (LES) of compressible
hydrodynamics. This natural extension of earlier work with a 2D LES of a
shear mixing layer has been implemented on a BBN TC2000 highly parallel
computer. Timing studies show that this relatively new computer
architecture is well suited to such a simulation.

Prepared for the International Workshop on Large Eddy Simulation, to be
held December 19-21, 1990, in Saint Petersburg, Florida




1. Introduction

The nonlinearity of fluid flow leads typically to the excitation of many
interacting scales of motion which, unless strongly damped by viscosity,
become chaotic. The resulting turbulent motion has important transport
properties which can not be reliably predicted from statistical theories of
turbulence in complicated flow configurations of practical interest. Instead
one turns to numerical simulation in order to generate realizations of a
flow from which average transport properties may be extracted. The
Reynolds number measures the importance of nonlinearity compared to
linear viscous effects. For the high Reynolds numbers that occur in many
applications, the range of excited scales can far exceed the range feasible
for direct numerical simulation (DNS) on present or future computers.
Observations show, however, that the turbulent transport of interest is
carried primarily by the largest scales of motion. This has led to the hope
that large eddy simulation (LES) would be adequate for practical use.

In LES, the turbulence problem is reduced to treating, as well as one
can, the effect of the unresolved subgrid scales on those explicitly
computed. In the earliest models of geophysical fluid flows, which have
essentially infinite Reynolds number, it was recognized (Phillips, 1959) that
upnless some artificially large viscosity was introduced, the natural
nonlinear cascade toward small scales would produce nonsegsicai behavior.
The simplest cure is to introduce a linear viscosity large enough that the
associated Kolmogorov dissipation scale lies within the resolved range. In
practice this has been found to damp unnecessarily the large eddies of
interest, and a pragmatic approach has been to use instead a linear
hyperviscosity proportional to some high power of the Laplacian and thus
more cofnicentrated on the barely resolvable scales. Such linear viscosities
suffer from requiring prior knowledge of the turbulent nature of the flow
and from being global in nature. They are thus not well suited to
inhomogeneous turbuience.

Over a quarter century ago, Smagorinsky (1963) introduced a
nonlinear eddy viscosity tied fo the grid size and to the estimated local
subgrid-scale turbulent kinetic energy production and cascade rate. It had
the decided advantage of adjusting itself to provide a local viscosity of the
needed strength without prior knowledge of the turbulence. A similar
artificial viscosity had been devised by von Neumann and Richtmyer
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(1950) to treat shocks in compressible flows. Although a deeper
understanding of the problem has led o the development of many
subgrid-scale viscosity prescriptions that are much more elaborate, none
has been much more successful.

Subgrid-scale viscosity is, of course, designed to account for the mean
damping effect of the unresolved eddies on the larger, resolved, scales of
motion. But there is another effect that is qualitatively different.
Subgrid-scale eddies also induce a random forcing of the large scales
through nonlinear interaction. Although such stochastic backscatter has
been understood theoretically for some time (Kraichnan, 1976; Leslie and
Quarini, 1979) in the context of homogeneous turbulence, there has been
little experience with the consequences for LES. One immediate
consequence of adding backscatter is that the LES acquires a stochastic
nature. An ensemble of simulations is needed to reveal the mean and
fluctuating components of the explicitly computed flow. It is unfortunate
that the large eddies are not deterministic, but this fact is completely
consistent with the chaotic nature of turbulent flows that renders them of
limited deterministic predictability (Leith and Kraichnan, 1972) on all
scales. A detailed description of a subgrid-scale model that includes both a
Smagorinsky viscosity and stochastic backscatter is given in Section 2.

Stochastic backscatier was applied successfully to the plane shear
temporal mixing layer (Leith,1990) induced by Kelvin-Helmholtz
instability, but in this case the LES was two-dimensional in spite of the use
of a three-dimensional subgrid-scale model. Such an inconsistency is
partially justified for the shear mixing layer which is known to generate
primarily two-dimensional large eddies. The principle purpose of the
present paper is to formulate a consistent three-dimensional LES.

The 3D compressible Eulerian hydrodynamics equations are given in
Section 3. They have been implemented with a standard Lax-Wendroff
algorithm to run in paraliel on up to 50 nodes presenily available on the
BBN TC2000 parallel computer at LLNI, The whole domain of ihe
calculation is decomposed into subdomains, one for each node.
Computation is carried out in paralle! for the volume of each subdomain
whereas only border information need be communicated in parallel
between nodes. The resulting surface to volume ratio benefit reduces the
time spent in communication relative to that in arithmetic to satisfactorily
low levels for calculations of reasonable size. Details of the Lax-Wendroff




scheme and its parallel implementation are provided in Section 4 for those
interested in the use of such relatively new computer architectures.

2. Subgrid-scale model

The most important requirement of a subgrid-scale model is that it
have some mechanism to simulate the mean turbulent energy cascade {rom
large scales to small across the resolution scale of the LES hydrodynamics
model. If, as is usually assumed, the resolution length scale A or
wavenumber scale ¥ = 1/A lies within the Kolmogorov inertial range with
energy cascade rate € whose energy spectrum is given by the well-known
law E(k) = a €2/3k"3/3, then there is some hope for universality of
behavior and simple dimensional scaling laws can be used to deduce an
appropriate eddy viscosity.

The resolution length scale A of the model is, of coarse, also the length
scale of the largest unresolved eddies. Let K be the specific turbulent
kKinetic energy of the unresolved eddies given by

K=, E(k) dk = £2/3¢-2/3 = ¢2/52/3 (1)

We assume here, for simplicity, that the Reynolds number is infinite and
thus that the inertial range extends to indefinitely high wavenumbers k.
The symbol = means equality to within a dimensionless constant factor.

In simple eddy viscosity models, local turbulence with length scale A
and specific kinetic energy K induces an eddy viscosity with coefficient vy =
CK1/8, ~K1/2), This is the product of an rms eddy velocity and a mizing

length multiplied by an adjustable dimensionless coefficient that can not be
determined through this kind of dimensional scaling analysis. Similarly,
from Eq. (1). the turbulen! dissipation rate may be estimated by €~ K3/2/3,

The explicitly resolved deviatoric strain rate tensor components are
given by

Sij= Vit V- (2/3) vy 8 _ (2)
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where v; are the resolved velocity vector components with X; derivatives
vi,j and §;; are the Kronecker tensor components. The summation
convention applies. For any eddy viscosity coefficient v, the local eddy
viscous specific stress tensor components are vy Sii- and the local shear
production rate of subgrid-scale turbulent energy K is given by the eddy
viscous stress work vp Sy Vi = V7 §2, where the local scalar strain rate S is
defined such that $2 = Sy; v; ; = (S;; $;;)/2. The local balance condition for K
is therefore that € ~ vy $%, or K3/2/4 =~ K1/2 3 §2, whence K ~ (AS)? and v =
A2S. The Smagorinsky eddy viscosity is defined as

vp=(CgARS (3)
where Cs is the traditional Smagorinsky constant,

We next consider the stochastic backscatter which, for isotropic
homogeneous turbulence in three dimensions, is known (Kraichnan, 1976)
to have a k4 spectrum to lowest order in wavenumber k. This means that
backsvatter is concentrated on scales of motion that are only a littie larger
than the resolvable limit. In a three-dimensional fluid dynamics code, the
lowest order effect of stochastic backscatter may be achieved by
introducing on the calculational grid an isotropic space- and time-white
random acceleration vector potential from which is derived a nondivergent
random acceleration term to be added to the momentum equation.

The mean of the random acceleration potential is zero. Its variance is
determined by the following dimensional scaling argument. The space

derivative of a vector potential ¢ | L2T-2] is an acceleration a; [ LT2} with
the dimensions shown. The space-time covariance of ¢ is given by

G (UX L) = Q%,0) ¢ (X', [ LAT4)

= W%,0) 3(X - x) 80t - ) &

—~—
~

The last expression implicitly defines a variance function Ww(X,t) for the

assumed isotropic space- and time-white random process. It may be
written explicitly as




wix,t) = (1/3) [dtox" Py, (x,4;x",t) [ LT3 (5)

As with eddy viscosity, one now constructs a dimensionally correct
expression for W(x,t) in terms of the local strain rate S [ T-1] and the
resolution length scale A [ L]. To within a dimensionless coefficient, this
must then be y(it,t) = S3A7. In finite difference approzimation ¢y can

only be space- and time-white on resolved scales. In fact, the integral of
Eq. (5) for w(x,t) becomes, in {inite approximation,

Wx,1) = (1/3) <dyty> A3 8t (6)

The dimensionally proper scaling is therefore achieved if the random
acceleration potential for each component and at each grid point and time
step are chosen independently as

o = Cp (S8U)3/2 (A/81)2 gy | L2T2 7)

where gy is a unit gaussian random number, i. e, drawn from a population

with zero mean and unit variance. All dimensionless coefficients in this
derivation are lumped into the single one G, which is adjustable but

should be of order one.

The procedure just described is based on the implicit assumption that
the resolution scale A is the same as the grid interval, say éx. But random
disturbances on the scale 8x are so poorly treated by finite difference
schemes that it may be better to run a smoothing average filter over the
field of ¢y 's chosen above so that the filtered field has spatial correlation

extending over about 26X, We may still take A - §x and absorb the filter
effect into the constant Cg,.

3. Compresgsible hydrodynamics equations

The equations of motion for 3D compressible hydrodynamics are
formulated in conservation form as

oU/ot + Fi,i = K - (8)




in terms of the S-vector of predicted variabies

p
PV
U = p V2 (9)
pVs
pe
the 5-vector of fluxes

PV
PVIVi - Y+ €5P 0y

Fi = DRSS 'TZi*' 92”p¢, (10)
PV3Vi - T3i* €34 P 0

pevi-Tvi+ g

and the S-vector of sources

0
pf
K - »pofy (11)
Pfg
plivi+paq

The variables that appear in these equations are density p, velocity v;, total
specific energy e, stress tensor 1y, stochastic backscatter potential ¢y of Eq.
(7). diffused energy flux @y, external specific body force fy, and external
specific energy source . The iolal specific energy is made up of internal
specific energy i and kinetic energy so that e = i + u;u;/2. The summation
convention applies, and €iix is the standard alternating tensor. The stress
tensor is made up of an isotropic part involving the gas pressure p

assumed to satisfy ay-law equauon of state, p- = (y-1) p i, and an eddy
viscous part so that




tii=-p8ﬁ+vaSii (12)

where vy is the Smagorinsky eddy viscosity coefficient given by Eq. (3).
The eddy diffusion coefficient k7 for internal energy is assumed to be
proportional to the eddy viscosity coefficient, thus k = vr/Pr, where Pr is

the dimensionless eddy Prandt! number. The eddy flux of internal energy
is given by

Uk"KTi,k (13)

Note that in this formulation stochastic backscatter is introduced in Eq. (10)
as a random stress. For constant density this reduces to the nondivergent
acceleration discussed in Section 2 and in an earlier note {Leith,1990). The
present formulation ensures that stochastic backscatter conserves
momentum exactly rather than statistically.

4. Numerical scheme

The finite difference model for the integration of the equations of
motion is based on the Lax-Wendroff predictor-corrector scheme. Let Uo
be the old values of U at the beginning of the time step, Up the predicted
values appropriate for a half time step, and U the new values at the end of
the step. The three-dimensional domain of the model is divided by a
regular Cartesian mesh into a three-dimensional array of cells. The fields
U and the fluxes F; based on them by Eq. (10) are defined as cell-centered

quantities. Spatial differences are obtained by differencing neighbor
values to east and west for xy, to north and south for X,, and up and down

for the x5-direction. In obvious notation the predictor step becomes

g

n - (Hae » UsV . U502 + Fod + Uob + Jo9)/6
- {81/48x ) [By(Uo®) - By(UoV)l

- (8t/46x5) [Fp(Un) - Fp(Yos)
- (3t/4823) [F3(UaY) - F5{Ue?)]
+(8t/2) K(Uo) ; (14)




and the corrector step

U~ Uo
- (8t/281¢) [F(Up®) - Fy(Up¥)]

- (8t/28x5) [Fo(Up?) - Fo(Up%)]
- (31/28x3) [F35(UpY¥) - F4(Up9)]
+ (5t) K(Up) (15)

At the end of the time step, an update Uo = U is needed to prepare for the
next time step.

As a simple specific example of the parallel implementation of this
algorithm, consider the numerical simulation of compressible
hydrodynamics in a periodic cube subdivided into 48x48x48~110592
cubical cells. Make a two-dimensional decomposition into 313=9 columns
each consisting of 16x16x48 = 12288 cells, and assign each column to one
processor node. Owing to the compact nature of the finite difference
stencil, each node only needs information from a border layer of cells in
each of four neighboring nodes. The cell arrays on each node are expanded
to 18x18x50~16200 in order to include such outer border cells. The data
for such outer border cells are cbtained by an exchange between inner and
outer border cells on adjacent nodes. Such data exchanges require
internodal com munication that is independent of the details of the
numerical algorithm as long as it involves an explicit forward time step
calculation based at most on a 3x3x3-27 cell stencil.

The calculational time step cycle reduces then to a sequence of
arithmetic evaluation sweeps interleaved with communication sweeps all
done in parallel. The nature and timing of the sequence in an
implementation of this simple example on the BBN TC2000 is shown as
follows:




B cote o2 c |

time cycle timing sec
gaussian
generate gaussian ({8x18x50x3=48600) 3.8
exchange borders (4x18x50x3-10800) 0.1
predictor step
compute fluxes (16x16x48x5x4=245760) 1.6
exchange borders (4x18x50x5x4=72000) 0.6
advance hydro (16x16x48x5~61440) 1.1
exchange borders (4x18x56x5-18000) 0.2
corrector step
compute fluxes (245760) 1.6
exchange borders (72000) 0.6
advance hydro (61440) 0.3
exchange borders {180600) 0.2
update 0.1
total 10.7
total exchange 1.7

In parentheses are shown either the number of 64-bit results computed or
the number of 64-bit words transmitted. For this calculation the
computational speed per node is about one megaflop per second and the
communication time is about 9 microseconds per word.

In the time cycle the first step produces a field of random gaussian g

for which border values are then exchanged with neighbors in order to
provide a consistent basis for the generation of the backscatter potentials
0y as part of the flux calculations. The same gy field is used for both the

predictor and corrector step.

The extra price paid for the use of parzliel computing is
communication which in this example takes about 15% of the total time.
For the domain-decomposition message-passing paradigm used here the
scaling properties are quite simple. If, for example, we double each
dimension of the cube tn 56196196~884736 cells, and at the same time
increase the node array to 6x6-36, so that there are now 16216x96 cells on
each node, both arithmetic time and communication tire is doubled, and
the ratio remains the same. 1f, on the other hand, for the larger cube we
still use a 3239 array of nodes, then the arithmetic time is increased by




3-fold whereas that for communication only by 4-fold. This reflects the
surface to velume ratio benefit enjoyed by commugication relative to
arithmetic,

5. Outlook

Although the basic LES model has been tested against simple known
sofutions such as acoustic standing waves, it has not yet been applied to the
study of turbulent mixing layers. Before a large investment in computing
time is made for such studies, better visualization tools are needed, and
this is where the present effort is focussed. Early studies are expected to
be of a 3D version of the shear mixing layer calculations made earlier in 2D
and of the buoyancy driven mixing layer induced by Rayleigh-Taylor
instability. For this latter, an extension of the present subgrid-scale model
to account for buoyancy sources of subgrid-scale turbulence will be used.
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Compressible turbulence is currently the subject of increased research in the fluid dynamics
community. The experience accumnulated over the last several decades in incompressible
turbulence now serves as a starting point in the quest for understanding the basic physical
mechanisms that differentiate compressible turbulence from its incompressible counterpart.
To this end, ideas are freely borrowed from compressible transition research which has come

a long way towards classifying the various modes and effects in compressible flows, albeit in
the linear regime.

Although still very incomplete, our knowledge of incompressible turbulence was accumu-
lated through a combination of experiments, theory and direct numerical simulation (DNS).
Today, researchers are studying compressible turbulent flows using primarily DNS (Passot
and Pouquet 1987, Erlebacher and Hussaini 1987, Orszag and Kida 1990, Blaisdell 1390,
Lele, Lee and Moin 1990). Whenever possible, some theoretical justification of the results
found in the aumerical simulations is provided (Erlebacher et al. 1990, Sarkar et al. 1989).
Past theoretical work on compressible turbulent flows concentrated mostly on modifications
of incompressible scaling laws to include Mach number effects (Zakharov and Sagdeev 1970,
Kadomtsev and Petviashvili 1973, Moiseev, Sagdeev, Tur and Yanovskii 1977, and L’vov
and Mikhailov 1978). It is unlikely that the near future will bring about experiments de-
tailed enough to confirm or reject some of these theories. However, with the explosion in
supercomputer memory and speed, it is possible that DNS may soon provide some clues to
spur theoretical research along the right direction.

In his seminal paper on supersonic turbulence, Kovasznay (1957) described the decompo-
sition of compressible turbulence intc acsustic, voriical and entropy modes. This interpre-
tation of the eigenmodes of the flow has remained a beacon in the interpretation of results
both in compressible turbulence and compressible transition research. The nonlinear inter-
action between these tnodes was considered by Chu and Kovasznay (1958). Another way to
separate compressible and incompressible effects on the turbulence is to perform a Helmholtz
decomposition on the velocity field (Moyal 1952, Passot and Pouquet 1987, Erlebacher et
al. 1990, Sarkar et al. 1989, Lele, Yee and Moin 1990). Despite the progress made, much
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more work is required before the “incompressible” and “compressible” characteristics of the
turbulent flow are fully classified.

Direct numerical simulations have uncovered several regimes of isotropic turbulence which
are now under study. An original classification was attempted by Passot and Pouquet (1987)
when they uncovered the presence of either weak or strong shocks in the flow depending on
the initial conditions. They found that strong shocks are present when the fluctuating Mach
number (M;) is O(1), while weak shocklets can be present sven for small M,. On the other
hand, Feiereisen et al. (1981) and Erlebacher et al. {1987) periormed DNS of compressible
turbulence (with M; = 0.5) which had almost incompressible statistical properties. The
reason was brought about a couple of years later by Erlebacher et al. (1990) who related the
that initial conditions of the flow to the characteristically different turbulent regimes. Since
then, Kida and Orszag (1990) have considered both forced and unforced isotropic turbulence,
and work has begun on homogeneous shear flow turbulence (Sarkar et al. 1990, Blaisdell
1990).

The ultimate objective of understanding turbulence physics (besides academic interest)
is to model complex turbulent flows of practical importance with a view to predict certain
gross properties of engineering interest. To this end, turbulence models must be developed
since the Reynolds numbers of aerodynamic interest are much too high for direct numerical
simulations on even today’s fastest supercomputers. There are two standard approaches.
The first approach replaces the Navier-Stokes equations by the Reynolds averages Navier-
Stokes equations. The application of Reynolds stress models to compressible lows has a long
history and will not be discussed in this paper. Reviews can be found in Cebeci and Smith
(1974) and Speziale (1991).

The second approach is to decompose the flow field into its energy containing eddies (large
scale), and the presumably universal small scale eddies. While the dynamics of the large
scale eddies satisfy known evolution equations, there remain source terms, called subgrid-
scale stress terms which must be modeled. This forms the basis of subgrid-scale modeling.
Subgrid-scale models are expected to be more robust to different large-scale flow conditions

than their Reynolds stress counterparts. The price to pay for this increased generality, is the
higher expense.

It is still too early to consider Large-Eddy Simulations (LES) of compressible flows as an
engineering tool. But if reliuble models can be found, the large-eddy simulation databases
can be used as a testbed against which the cheaper Reynolds stress models can be evaluated.
This is pretty much the same relationship that exists between the DNS databases and the
LES models (which of course must be tzsted belore they are generally accepted).

In this paper, we consider the advances in both the Direct Numerical Simulation and in
the Large Eddy Simulation of compressible turbulence. These subjects are treated together
since the numerical techniques that are used to perform the simulations are identical for
both types of problems. In fact the LES models are often incorporated into the DNS codes.
To date, LES modeling of compressible turbulence is based less on theory, and more on




extensions of incompressibie models to the compressible regime. As we demonstrate, these
models, in the absence of shocks and/or shocklets, are quite capable of predicting reasonably
well the decay rates of the turbulence and of the thermodynamics fluctuation rms levels. We
conclude with some current issues that should be addressed in the near future. A discussion
on recent LES advances can be found in Ferziger (1984).

The full paper will be provided in the final issue of the proceedings. In this extended
abstract, many issues not mentionned will be addressed in the final ranuscript.

1 DIRECT NUMERICAL SIMULATION

When one speaks of direct numerical simulations, one refers to the fully resolved solutions
of the complete set of Navier-Stokes equations without any modeling. For reference, these
equations are (in dimensional form)

9p , 0(pvi) _

% T oo O (1)
O(pux)  O(pvsvr) _  Op |, Bom
5 T on - b o @

8(ph) | O(phve) _ Bp dp 0, 0T
ot T oo ot a5y " oay)
respectively, where p is the mass density, v is the velocity vector, p is the thermodynamic
pressure, 4 is the dynamic viscosity, & is the enthalpy, T is the absolute temperature, and %

is the thermal conductivity. The viscous stress oy and the viscous dissipation & are defined
by

+ @ (3)
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respectively. Equations (1)-(3) must be supplemented with the equations of state
P = pRT, h=C,T (6)

for an ideal gas where R is the ideal gas constant and C, is the specific heat at constant
pressure. Likewiee, the dependence of the viscosity and thermal conductivity on the temper-
ature must be provided (i.e., relationships of the form g = p(T') and x = x(T') are needed
and these depend on the gas under consideration). Typically Sutherland’s law is appropriate
for the viscosity when the medium is air. The Prandtl number is set to a constant by most
investigators.

The majority of DNS of compressible turbulence have been concerned with homogeneous
turbulence (either isotropic or homogeneous shear). In all cases, the boundary conditions
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are periodic in all directions. Homogeneous shear flow simulations are rendered periodic
through the Rogallo transformation (Rogallo 1981). For a long time, only spectral methods
were considered accurate enough for the numerical solution to the full Navier-Stokes equa-
tions. This was due to the low dissipation and dispersion errors of the method, which are
very desirable characteristics of the numerical algorithm when performing direct simulations.
Indeed, one wishes to protect the structure of the smallest turbulent eddies from numerical
dissipation and dispersion. If these eddies were smeared out by the numerics, the simulation
would take the character of a large-eddy simulation which seeks to model the small-scale dis-
sipation as a function of the large scale characteristics of the turbulence. Recently however,
high order finite-difference methods (Lele 1990, Shu, Erlebacher, Zang and Osher 1991) are
gaining acceptance in the DNS commnunity. Tests at Langley confirm th~ high accuracy of
the method waen applied to turbulence calculations (Shu 1991). Moreover, the 6th order
compact scheme is two time faster than the spectral algorithm when compared on identical
numerical grids. However, except for the recent work of Lele, Lee and Moin (1990) on shock
turbulence interaction, all investigators still opt for the Fourier collocation schemes (Canuto,
Hussaini, Quarteroni and Zang 1988).

Passot and Pouquet (1987) use the non-conservative form of the momentum equations and
the conservative enthalpy equation. All terms are treated explicitly, except for the viscous
terms which are partially implicit. Time advancement is a combination of Crank-Nicolson
and 3rd order Adams-Bashforth. Erlebacher et al. (1987) considered iritial conditions
with very low turbulent Mach number, and therefore required a low error scheme capable of
treating the acoustic terms implicitly. They use a time-split scheme. The first step integrates
(with an explicity third-order Runga-Kutta scheme) the full equations with a set of linear
acoustic terms subtracted off. In the second step, the remaining set of equations (linear) is
solved exactly in Fourier space. Thus, large time steps do not sacrifice accuracy, since the
proper acoustic behaviour is accounted for in the implicit step. The only errors incurred are
the splitting error, and the error due to the (small) variation of the average sound speed
during the implicit stage. The homogeneous shear flow simulations of Sarkar et al. (1989)
are currently fully explicit.

Feiereisen (1981) was the first to perform DNS of compressible homogeneous turbulence.
He pointed out potential problems which could occur if the convective terms were not dis-
cretized properly. He advocated that the convective terms be rewritten in the form

L 18(pvew) Bue

d(pu)
2 Oz; UL Oz (7)

+ Vi ba; .

As noted by Feiereisen, Reynolds and Ferziger (1981), when this form is employed together
with a symmetric differencing method in space (for example Fourier collocation), then in
addition to mass, and momentum, energy is also conserved for the ideal compressible equa-
tions (zero viscosity and thermal conductivity) in the absence of time differencing (and
splitting) errors. Fornberg (1975) discusses the conditions under which the aon-symmetric
form of the convective equations maintains numerical stability. Recently, numerical simu-
lations of supersonic boundary-layer flows undergoing laminar to turbulent transition have
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demonstrated the unstable nature of both the conservation form (-é——-pv,-v,-) and the non-

conservative forms (pvj-g-—-) using a spectral collocation algorithm. Stability was achieved

with the expression (7). Note that the alternative form

a(m’kvl) _}_’_ 8(pvs)
2 3&: ‘"’“am; L e oz (8)

is also subject to instabilities. The reasons are not known. In a recent paper, Zang (1988)
discusses the relative merits of the different forms that can be taken by the convective
operator in incompressible flows. He conclude that aliasing errors decrease substantially
when the skew-symmetric is used instead of either the rotational form or the non-conservative
form. However, he does not demonstrate an actual instability similar to the one recently
observed in the supersonic transition simulations.

1.1 Initial Conditions

Different initial conditions have been used by different investigators. Often, they can be
traced back to their roots in incompressible flow simulations. This is clearly the origin
of the initial conditions used by Feiereisen et al. (1981) and Erlebacher et al. (1987).
Both sets of authors chose a divergence-free initial velocity field, and computed the initial
pressure to insure that the time-derivative of the divergence of velocity also be zero initially.
Furthermore, the initial fluctuating density rms was zero. As explained by Erlebacher et
al. (1990), these conditions lead to a very slow build-up of the compressibility effects on
a convective O(1) time scale. If one relaxes the condition that the initial time derivative
of v,; be zero, and specify instead random fluctuations for pressure, the flow will reach a
quasi-equilibrium on an O(M;) time scale instead.

More general initial conditions are considered by Passot and Pouquet (1987), and adopted
by Erlebacher et al. (1990). These allow the generation of weak and strong shocks, or sim-
ply the existence of acoustic waves of prescribed strength superimpozed on an essentially
nonlinear incompressible flow field. These initial conditions are based on a Helmholtz de-
composition of the velocity field:

u=ul40€ (9)

I ,,C

where u’,u® are respectively the solenoidal and irrotational components of velocity. At
t = 0, the reference turbulent Mach number M,,, the Reynolds number, Re, the Prandtl
number, Pr, the rms levels of u$, ul, po, Tb, and the autocorrelation spectrum for p, T, u®
and u’ are imposed. The zero subscript refers to the initial state. The energy spectrum of
the density, temperature and velocity fluctuations are all given by

2k3

BE(k)=k'e % (10)




where kq corresponds to the spectrum peak. Strictly speaking the initially irrotational com.
ponent of velocity should have an autocorrelation spectrum proportional to &* for low & to
guarantee analyticity (Batchelor 1953). However, Erlebacher et al. (1990) did not feel that
this would qualitatively influence the numerical results.

1.2 Results

In this section we present an abreviated section on some fundamental results found in the
last couple of years by DNS of compressible turbulence. A more complete version of this
section will appear in the full paper.

Passot and Pouquet performed 2-D and 3-D DNS of compressible isotropic turbulence
on 2562 and 643 grids and were able to produce both weak and strong shocks. The presence
or absence of the shucks was controlled solely by the initial conditions, whose influence can
never completely vanish in decaying isotropic flow. They found three separate regimes. The
weak Mach number regime (M; < 0.3) has two sub-components. If §p/p < M?, the flow
remains quasi-incompressible for all time. However, if §p/p > M}, even by a small amouant,
the flow switches to a state which is mostly irrotational. Under these conditions weak shocks
(negligible entropy jumps) can appear which propagate at the velocity of sound across the
domain. The third regime is the strong shock regime characterized by M; = O(1). Passot
and Pouquet considered the decay laws of their spectra compared to that of predicted by
various theories. Results were inconclusive, mainly because the simulations are still not
capable of producing an inertial range. They also find that in the strong shock regime, there
is a strong influence of the baroclinic torque in the vicinity of the shocks (for 2-D flows). In
these cases, the Vp and Vp were found to be nearly perpendicular.

Erlebacher et al. (1990) were primarily concerned with the weak shock regime treated by
Passot and Pouquet (1987). They sought to explain and quantify rigorously the relationship
between initial conditions and the subsequent evolution of turbulence. While it is a widely
accepted fact that in the absence of shocks, compressible turbulence is the superposition of a
nonlinear incompressible turbulent flow and of linear acoustic waves isotropically distributed,
it was never made clear under what conditions such flows were actually realized. By a
careful asymptotic analysis, Erlebacher et al. (1987) found that the presence of weak shocks
is linked to initial flow conditions which were out of acoustic equilibrium. More precisely
they determined that in the absence of shocks, the flow evolves towards a state where the
compressible potential energy and the irrotational kinetic energy are in equipartition (see
also Sarkar et al. 1989). If the initial conditions violate this equipartion in the direction of
higher potential energy, weak shocks will occur. From a practical standpoint, this situation
can arise for the initisl conditions: M, = 0.04, pym, = 10%, and x = 0.1 where x is the ratio
of irrotational to solenoidal kinetic energy.

The compressible simulations of Kida and Orszag (1990b) highlight some interesting
differences with Passot and Pouquet (1987). For example, Kida and Orszag find that in




3-D decaying turbulence, Vp and Vp are almost aligned in strong shock regions. These
alignement properties in two-dimensional and three-dimensional turbulence are not currently
explained. In the three-dimensional simulations, they find that the production of vorticity
is dominated (overall} by the vortex stretching and the dissipation terms. However, in the

shock regions, the compression and baroclinic terms produce vorticity, while the dissipation
term depletes it.

2 Large-Eddy Simulation

The large-eddy simulations are based on the following Favre-filtered continuity, momentum,
and energy equations (Speziale 1988):

5—£+V-('ﬁu)=0 (11)
9, . e
-é;(pu)-i—v-(p i)=-Vp+V.-%+V-7r
%(C’mT)-%-V-(C,,ﬁﬁT):—pV-u+c-Vu+V-m—V-Q (12)

where R is the ideal gas constant, C, is the specific heat at constant volume, 7 is the subgrid
scale stress tensor, Q is the subgrid scale heat flux, and Iis the identity tensor. In Egs. (11)-

(12), an overbar represents a spatial filter whereas a tilde represents a mass weighted or
Favre filter, ie.
oF

> (13)

where F is any flow variable. These equations are obtained by applying a Gaussian filter to
the full Navier-Stokes equations. The subgrid scale stress tensor and subgrid scale heat flux
are modeled as follows (Speziale et al. 1988 and Erlebacher et al. 1990):

F=

2

e 136 - L& 1 - 2ogpal
T = —p(ua i)+ 2CnﬁA1Hg (8 3(5 D I) 3CIpAfHéI (14)
i 25 CR L 3:11/305
Q= CvP(UT -l — -ﬁ;AfIIs VT) (15)

where Ily = S:S, Ay is the filter width, and Cr and C; are constants which assume
the values of 0.012 and 0.0066, respectively. The turbulent Prandtl number Pry is taken
to be 0.7. In the incompressible limit, the subgrid scale stress model (14) reduces to the
linear combination meds! of Bardina et ai (1983). The solution technique is essentially the
numerical method discussed in Erlebacher et al. (1990) modified to account for the eddy
viscosity term.

This subgrid-scale model was tested both by Erlebacher et al. (1990) and Zang et al.
(1990). They compared the results of 96 DNS of isotropic decaying compressible turbulence

7




- e e nm —

R SR DR

el

wess

with the results of LES on 32 grids. The initial conditions were spectrally interpolated from
the DNS results after the first peak in the time history of total enstrophy. Results show that
the subgrid-scale model is capable of correctly predicting the decay rates of kinetic energy
(both compressible and solenoidal), and of the thermodynamic variables (p, T, p).

DNS were also performed on 32? grids to directly measure the effect the subgrid-scale
model. Furthermore, runs were made to establish the sensitivity of the subgrid statistics on
the actual values of the model constants. To this end, they were varied up to 50% above
and below their nominal values. It was found that such variations can influence the modeled
flow characteristics substantially. Therefore, the actual functional form of the LES model
are an important consideration, even for this simple flow. The effect of filter width on the

LES was also studied.

3 Conclusions

We are today at the threshold of a new beginning in the understanding compressible turbulent
flows. One can only hope that the interest expressed by the fluid dynamics community and
the industry at large will continue on its present track.

It is clear that there are many questions that remain unanswered, and many controversies

yet to come. The following ten years promise to be very exciting for anyone actively involved
in the field of compressibe turbulence research.
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LARGE-EDPY SIMULATIONS OF COMPRESSIBLE MIXING LAYERS
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1. INTRODUCTION

The large-eddy simulations technique is pursued as a promising method for the prediction
of flows of technologica! and scientific interest. Successful applications of LES to flows of
engineering interest demand developing and testing proper subgrid-scale models and
adapting high-order finite-difference methods to complex geometries.

Our effort is concentrated on evaluating the performance of different subgrid-scale models
for compressible wrbulence, and on developing finite-difference methods for large eddy-
simulations.

In this paper we present preliminary results obiained for a temporally developing mixing

layer. The linear combination model developed by Bardina et al [1] for incompressible
flows and generalized to compressible flows by Erlebacher et al {2] (see also Speziale [3])
is used in this study. The eddy viscosity coefficient is determined from the Smagorinsky
formula. The nunierical method is an explicit fourth-order finite-difference method
developed by Gortlieb and Turkel [4]. This method has been used by Tang ¢t al [5,6] for
the direct simulations of the instabilities of supersonic mixing layers.

2. EQUATIONS OF COMPRESSIBLE LARGE-EDDY SIMULATIONS

Using standard notation, the compressible Navier-Stokes equations are

Op @ _
5("+’a";§(°"’)"° (1)
0 0
a3 (pup)+ 5% (pujuy+pdy-ty) = 0 (2)
d d )
5 (PE)* = —[(pE+p)ujuititqy ] = 0 3)

)

where E is the total energy per unit of mass,

E=e+§uiui (4)

Tjj is the viscous stress tensor,

=Mk s, O OY
Ty . Aaxk 511+U(axj +0xi) &)




and qgj is the heat-flux vector,

oT
G=-K o (6)
j

A perfect gas with constant specific heats cy and ¢p is assumed, hence the equations of
state are

e=c,T (7
and
p=RpT (8)
The resolvable fiow field is defined by
flx,t) = j G(x-8) fix,t) dE 9
D

where D is the flow domain, and G is a function that satisfies the normalization condition:

f G(x-§) dE=1 (10)

It is assumed that the function G is such that filtering and differentiation with respect to
space and time commute, hence

of _of
& a ()
of _of (12)
an Xj
Following Erlebacher et al [2], we introduce the Favre-filtered field,
f=pf/p (13)

and decompose the total flow field into a resolvable flow field and a subgrid-scale flow
field, ‘

f=f+f" (14)
Note that, in general,
f=f (15)
and
f'#0 (16)

Filtering the mass and momentum equations, we obtain

op . 3 —~
—_— ) = 17
& "o (pu) =0 (17




and

—_ G~ - -
9 (p )+ 7 (p WU +p & + Ry*+Ly+Cyj - 1;3) = 0 (18)
ot an
where _
Rij= 6 u'iu'j (19)
Ly=p (Eﬁj - UjU;) (20)
Cy= p (Quj +du; ) (21)

are referred to as the Reynolds-stress, Leonard-stress, and cross-stress terms. The filtered
pressure is given by

p=RpT (22)
Filtering the energy equation, we obtain
0 —= 0 ==, —\~ —_ 7
5 (0 E+ @+ 5[0 EB+p)i; #K;+Q; -utyr+ g = 0 (23)
j
where
E=e+ %‘ ﬁ'ifi, (24)
q=-é— (Rix+Lik+Cro) (25
K= —:1):5 (ﬁ-fxrﬁj - Uy -+’ U+ UG o'’y + 2 0+ 20 u') (26)
Qj= S 5 (T'U'j +Tﬁj - Tﬁj '*'T'ﬁj*fll’l) 27

3. A SUBGRID-SCALE MODEL

Here, we summarize the subgrid-scale model of Erlebacher et al [2] (see also Speziale et al
[3]). This model is an extension to compressibie flows of a linear-combination model
developed by Bardina et al [1] for incompressible flows.

The Leonard-stress term needs no modelling, while the cross-stress term is modelled by a
scale similarity model,

Cyj= p (dyg; - 4iy;) (28)
Therefore, the sum of the two terms can be written as

Li +Cy=p (m - g‘ﬁj) (29)
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The Reynolds-stress term is modelled by an eddy-viscosity model where the eddy-viscosity
coefficient is given by the Smagorinski formula,

Ry=-2CrA” p V11 (§- -;—gkk&j) - % C; A% p Y (30)
where .
~.. = _l_ Qﬁ‘_ + %

Sj 2( ” axi) (31)

is the cate of strain tensor of the resolvable flow field, and
H=§ij§i i (32)

In Eq(30), A is the filter width.

The tempzrature-velocity correlation terms are modelled as follows:

T'w;= - Cp Az\fﬁg} (33)
|
that is a gradient-tansport model, and
T’Gj'*‘?ll'j = T ﬁj - T ﬁj (34)

that is a scale similarity model. Substituting Eqs (34) and (35) into Eq(27), we obtain

Qj=cp5(-cTA2$/ﬁ%+ﬁ-?ﬁj) (35)
where the constant CT is written as
Cr=Cr/Prr (36)
and PrT is a turbulent Prandtl number.

We model the third and last term in Eq(26) as

——— ——at

puiluj= p uju; =Ry § (37

where Rjj is given by Eq(30). We note that the first two terms of Eq(26) can be computed
directly, whereas a scale similarity model may be used for the remaining three terms.

In the present preliminary investigation, we neglected all the terms in Eq{26) cxccpt the last
term for which we used Eq(37). Also, we neglected the q term in Eq(24) and the Leonard
and cross terms. Because free shear layers are treated in this paper, the viscous and the heat
conduction terms are also neglected.
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4. RESULTS

Temporal simulations are obtained for compressible mixing layers at a convective Mach
number of 0.4 and density ratio of 1. The initial mean velocity profile is assumed to be a
hyperbolic tangent profile, u = Ug tanh (y /8) , where Ug and d are used as reference
velocity and length throughout the simulations. The mean temperature profile is obtained
from the Busemann-Crocco energy equation, and the mean pressure is assumed to be
uniform. Disturbance fields are then superimposed on these mean profiles. In the first case
of a two-dimensional simulation, the velocity disturbance field is a white-noise divergence-
free field. No density or pressure disturbances are used. In the second case of a three-
dimensional simulation, the disturbance fields are specified by the eigenfunctions of the
linear stability theory.

4.1 Two-Dimensional Simulations

According to the linear stability theory, the most amplified 2D wave has a wave-number of
0.4, and hence the corresponding wave length is A=5m. To be able to predict the pairing
phenomena, we choose a computational box that extends 4 A in the strecamwise direction,
and over the range -30< y £ +30 in the transverse direction. A uniform grid of (257,301)
points is used. Periodic boundary conditions are imposed in the x-direction, and zero
derivative boundary conditions are imposed in the y-direction.

A Fourier analysis in the x-direction is performed at selected time steps, and the modal
energy,

Ex(t) = j (Uu"+wW " ) dy (38)

Yeeua

is computed, where k is the mode number.

The initial spectrum of Ex is shown in Fig(1); a white-noise spectrum is evident. As time
progresses, the most amplified wave (k=4) extracts energy fromn the mean flow and
dominates the large scale structure of the mixing layer. This is clearly evident in Fig.(2)
which shows vorticity contours at time t = 51.2 ( 8/ Ug). The corresponding modal energy
spectrum is shown in Fig.(3). As this mode saturates, the first subharmonic mode (k=2)
grows and becomes the most energetic mode. This mode is responsible for the first pairing
that is shown by the vorticity contours at time t = 83.2 ( 8/ Up) in Fig. (4). The energy
spectrum at this time is shown in Fig. (5). At a much later time, t = 128 ( 8/ Up), the
second subharmonic (k=1) becomes the most energetic mode, and a second pairing appears
in the vorticity contours as shown in Fig. (6) and Fig. (7) of the modal energy. We also
note that the spectra shown in Figs. (3), (5), and (7) suggest that the energy-containing
eddies follow a power law of exponent of (-4). Such a power law has been reported by
Lesieur et al [7] in their 2D large-eddy simulations of an incompressible mixing layer.

4.2 Three-Dimensional Simulations

The second case of simulation is a temporal 3D mixing layer. The computational box
extends over 2A in both the streamwise and spanwise directions, and covers the range
-15€ y £ +15 in the transverse direction. A uniform grid of (65,151,65) points is used.
Periodic boundary conditions are imposed in the x- and z- directions, and zero derivative
boundary conditions are imposed in the y-direction.




W

In this case, the initial fields are given by the linear superposition of the hyperbolic tangent
profile, the most amplified 2D and 3D waves and their first subharmonics and
superharmonics. A Fourier analysis in the x-z plane is performed at every time step, and the
modal kinetic energy

Emn(t) = J QU+ +WW )y dy (39)

Ymua

is computed, where m and n are the mode numbers in the streamwise and spanwise
directions, respectively, of the Favre-averaged velocity field. The time development of this
energy for different modes is shown by Figs. 8-10. Evident in Fig. 8 is the dominance of
the two-dimensional mode (1,0) which saturates at time t = 60. In Fig. 9, we see that the
most important 3D mode is the (1,1) mode which gives the streamwise vorticity.

At time t=75, the spectrum E(m,n) is shown in Fig. 11 as a function of m for different n ,
and in Fig. 12 as a function of a for different m. These figures suggest a power law of the
energetic eddies with slopes between -3 and -4.
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Fig. (1) Modal energy spectrum at t=0, two-dirnensional simulation.




Fig. (2) Vorticity contours at t = 51.2 ( /Uy ), two-dimensional simulation.
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Fig. (4) Vorticity contours at t = 83.2 ( 3/Up ), two-dimensional simulation.
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Fig. (5) Modal energy spectrum at t = 83.2(5/Uo ), two-dimensional simulation.




Fig. (6) Vorticity contours at t = 128 ( & /Uy ), two-dimensional simulation.
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Some Issues in Computation of Turbulent Flows
Parviz Moin

Stanford University & NASA-Ames

The presentation will address the key problems and solutions for the large eddy simulation of
turbulent flows. Specifically, we will argue that high order finite difference methods give
comparable results to spectral methods with the same resolution. The problem of prescribing
turbulence at the inflow of the computational domain will be addressed in conjunction with
examples from direct simulation of compressible isotropic turbulence and the flow over a
backward facing step.

The main part of the presentation will be devoted to subgrid scale modeling. Among the
deficiencies of the widely used eddy viscosity models in large eddy simulations are the variation
of model constant in different flows, incorrect or ad hoc imposition of limiting behavior of the
stresses near walls, and strictly dissipative nature of the models. Recent direct simulations of
wall-bounded and homogeneous flows show that there is energy transfer from small scales to
large scales (backscatter) at about 40-60% of the grid points (Piomelli, Cabot, Moin & Lee,
1990). Eddy viscosity models (with positive eddy viscosity) remove energy from large scales at
each point in the physical space. In the past, improvements for SGS models have been sought in
the same manner as in phenomenological modeling, that is to resort to additional moment

equations. This practice ignores the wealth of information available from the computed large
scale field.

Using the notion of subgrid stress similarity of Germano (1990) and Bardina et a/. (1980), a new
eddy viscosity subgrid scale model has been developed which overcomes the aforementioned
drawbacks (Germario, Piomelli, Moin & Cabot, 1990). The model coefficient is a function of
space and time and is computed dynamically during the computation using the spectral
information in the resolved field. With this model the subgrid scale stresses have the proper
asymptotic behavior near the wall and vanish in laminar flow without the use of ad hoc damping
functions. In this formulation, the subgrid scale dissipation can become positive which would
act as production for the large scales. The model has been tested in large eddy simulation of

transitional and turbulent channel flow. The agreement with the experimental data and direct
simulations are good.
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SPECTRAL LARGE-EDDY SIMULATION
OF TURBULENT-SHEAR FLOWS

by
M. LESIEUR, P. COMTE, X. NORMAND
O. METAIS and A. SILVEIRA

Institut de Mécanique de Grenoble, France
B.P. 53X, 38041 Grenoble-Cedex

To be presented at the International Workshop: “Large-eddy simulations, where do we stand?”
St Petersburg, Florida, 19-21 December 1990

We present first the formalism of a spectral large-eddy simulation of isotropic three-
dimensional turbulence, based on the concept of spectral eddy-viscosity developed by
Kraichnan. For decaying turbulence at high Reynolds number, it yields a self-similar de-
caying kinetic-energy spectrum, of slope close to the Kolmogorov k=5/3 law. For a passive
scalar, a spectral eddy-diffusivity of the same genre allows to obtain an inertial-convective
range at the cutoff, as well as a k™! shear dominated range in the large energetic scales.

This subgrid-scale model gives satisfactory results in the case of stably-stratified decay-
ing turbulence: here, the dynamic coupling between momentum and temperature implies
for the latter a loss of its anomalous character. For a temporal mixing layer involving two’
fundamental Kelvin-Helmholtz vortices, we show that the model allows for the formation
of thin longitudinal vortices, with a Kolmogorov spectrum developing in the small scales,
and with turbulent intensities in good agreement with the experimental observations.

Afterwards, we reformulate the model in terms of the local second-order velocity
structure function, in order to take into account the intermittency of turbulence in phys-
ical space. This new subgrid-scale model is then applied to three-dimensional numerical
simulations of:

a) isotropic incompressible or compressible decaying turbulence.
b) flow above a backwards-facing step.

¢) temporal mixing layer.

d) spatially developing compressible boundary layer (Mach 5).

In the last two cases, we show how a three-dimensional random perturbation of weak
amplitude allows to trigger the development of a staggered array of ccherent vortices.




Anisotropic Representation of Subgridscale

Reynolds Stress in LES

Kiyosi Horiuti

Institute of Industrial Science, University of Tokyo
7-22-1 Roppongi, Minato—ku Tokyo 106 Japan.

Abstract

The Smagorinsky model which has been commonly used in Large
Eddy Simulation (LES) of turbulent flows is investigated. Although
various numerical simulations using the Smagorinsky model yielded
good results,' several issues on the model remain unsolved:

(a) A poor correlation of the model value of the Reynolds stresses
using the Smagorinsky model with the exact value computed from
the Direct Numerical Simulation (DNS) data.

(b) Universality of the Smagorinsky constant involved in the
model .

(¢) Development of the damping function with a wide applicability
and theoretical foundations, in place of the ad hoc Van Driest
type.

The aim of the present paper is to propose a new model which
partially resolves these issues.

1. Introduction

The basic approach adopted 1in the present study is an
incorporation of higher order terms in anisotropic representation
(AR)® into the subgrid scale (SGS) Reynolds stresses, supplementing
new terms to the conventional eddy viscosity. The same approach
has already been taken to Reynolds averaged model of k-t£ type.? As
is well known, conventional k-& models have several drawbacks.”
First of all, models based on isotropic eddy viscosity representation
inevitably fail to predict the anisotropy of the Reynolds stresses,
i.e., the inability to accurately forecast the normal stresses
degrades mode! applicability. Secondly, numerical studies indicate
that the conventional eddy viscosity magnitude is too large and
excessively dissipative, thus the model is unable to provide a
detailed prediction of the fine turbulence structures.” To overcome
the first deficiency, 2nd order anisotropic representation (AR)
models of the Reynolds stresses have been introduced by Leslie,®
Yoshizawa,” Speziale.'” These models provide acceptably good
predictions of the anisotropy of turbulence intensities,'®'’ and
statistically this representation is found in the 2nd ordér terms
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in the scale parameter expansion of the two scale direct interaction
approximation (DIA) approach.? When 2nd order AR 1is incorporated,
however, the eddy viscosity, a proportional coefficient between the
Reynolds shear stress and the mean strain, remains unchanged. AR
can be mathematically extended to higher orders. In Horiuti,® 3rd
order AR was used to develop supplementary eddy viscosity terms
which effectively reduce its magnitude, therefore counteracting this
k-¢ model drawback. The most prominent finding was that as a energy
scale in the eddy viscosity, the normal shear stress is more
preferable than the total turbulent energy. Besides, it was found
that 3rd order AR may be used as an alternative method to reduce
the magnitude of the eddy viscosity in the buffer layer region by
acting similarly to the Van Driest damping function,'” commonly

used in k—-€£ models. The present study extends the same approach to
the SGS modeling in LES.

Large Eddy Simulations (LES) involve the modeling of various
stress terms, which arise imn filtering the Navier-Stokes (NS)
equations. The raw variables u, are divided into filtered [ or grid
scale (GS) ] components and the subgrid (SGS) components. GS
variables u, are défined as follows:

3
U( Xy, Xy, 13) = L [T G(ri—z") wi(es 2 0"y dr, dr, das” (1)
t=]
where u, denotes the velocity component in the i-th direction,
i=1,2,3 correspond to the r (downstream), ¥y (normal to the walls),
Z (spanwise) directions, respectively. G, is a filter function in
the i-th direction.®> In the present study, the Gaussian filter is
used as G,(1=1,3) in homogeneous directions and the top—-hat filter

is used as G; in the Yy direction.®™ The SGS component is defined as
Uy = u, — u,. The length in wall units is denoted by (+)., the
horizontal average by <+>. The governing equations in LES for
incompressible flow become _

Qu; o) - - _07y _9p 1 vl 3

X + EEN (u,u,) 3z, 3T, + Be ' Ui * 2 ou , (2)

du,

31, 0o . (3)
When raw variables are divided into GS and SGS components, the SGS
stresses (T,) consist of _the three components : 7, =L,+C,,+R,,, the
Leonard terms (Lij = u,u,— u,uy), the cross stress ___terms

(Cij=ui u, +ui u;), and the SGS Reynolds stress terms (R, = u, u, ).
Recent direct tests of the models in LES using Direct Numerical
Simulations (DNS) data base ®''® rgvealed that among these terms,
Cij, which have been neglected in most of previous computations,3®
have a significant contribution. In a priori test,®'® it is shown
that the Bardina model' for Cij is compatible with the Gaussian
filter, and the inclusion of he models for C,;j significantly
improves the correclation with DNS. The Bardina model approximates
Ci) and Rij as follows:
- —— - —— =y ow — - — -
Cij ~ Cf= Ti(U;=Uj) +(T-T0T, , R, ~ (Li=T:) (T,-7)) (4)
One oi most significant contributions of the Bardina model is a
recovery of Galilean Invariance.'” In 'a posteriori’ test,®'™ it is
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found that the statistical values such as turbulence intensities are
considerably improved.

2. Anisotropic representation of the Reynolds stress

Reynolds stresses up to the 2nd order expansion in a scale
parameter ° can be expressed as

T e 5 2. - 1K duy OUa,, O U )
U, u, = 0y E 3,\- 3 82 {(C?I+C?3) 31 +C20Il )} D Tn J (3)
- kL 0u, Ouj

Cv % (ax O\r.)

5 Qui0u, . C:p, du,dur 0u,du duy duy
* 52{ Ca oxr Oxy (Oxz 0x, 9dux G.t.-) +Cr B, Or,} '

where k is the turbulent kinetic energy, € the dissipation rate of
k, C,,C-,Cr;,C:s are constant coefficients, and 8, is the Kronecker
delta symbol. After contlnulng to a 3rd order expansion some
noteworthy terms are produced,® i.e., in the products of first order
terms and second order terms:

ok dur duy QU U du, Ou,
_( C“ar 0 Xn C“@.r, dxy ] <Or, OI,) : (8)

Comblnxng with (5), the eddy viscosity ve (the coefficient of mean
strain (du,/0x,+du,/8x,)), is rearranged to

k® Cm CA2 6u1+au.

_2 1 ( CAI_CAZ(OHI_GUD
3Cp 82 all

(3.‘6. OI[

ve = 3c.k¢ Lk )+ Y¥E1. (D)

The second term in (7) is always positive and reduces the magnitude
of the eddy viscosity. Note that the terms within the square bracket
(C)) in eq.(7) correspond to the 2nd order AR turbulence
intensities, and that the theoretical values of Ca and Ca are
respectively 0.119 and 0.0424. The relationship between AR and
ASM ' will now be refered to.__ ASM approximates the transport
equation for the Reynolds stress u, u, as follows:

T N N e I R TR T (8)
du; Ou 5
v k(§Ea St~ a(p,-£6,P) - B(D,-E6P),

where,

D]) —U1 ul -%jl:_:'-u) ul %—ETI"P- Pl./z

The left hand side of (8) is a model for convection and diffusion
terms,'® whereas the 3rd to 6th terms in the right hand side are
for pressure—strain terms.'” Usually these coupled equations are
numerically sclved iteratively by setting the initiai values of
u, u; ‘9 equal to 25‘,16/3 and successively inserting them into (8),
with the superscrzpt denotxng the ngmber of iterations. After the
2nd iteration, an expression for u; u; is obtained,

"-—!-—r'au,' ———rQ u,

Pij= —u, u 3T —-uj Uy TR
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————y~ - Ou dUay OU
u @ = b (- $geT (aep i gRe S SUL (9)
1,1 =k: _ 1= Ouz dUn, QU ou,, 0u,
- O C. (1 'C'T)Ve cl'! ( Orz)é.r,. } <O.r,+ 1:.> )
Ou,Ou, du, du; . Ou; auy dup duy

¥ .
+ 0 greleOmogEge FU-eh) (GHa T se) Phaiaet )
where ¥ denotes y-2(1-a-B)/3. Notice AR and ASM are similar, with
the exception that (7) contains terms related to vorticity, possibly
violationg the principle of having the SGS Reynolds stresses
indifferent under frame rotations.®® This similarity has also been
noted recently in Rubinstein et al., ?" however, no reference is made
to the new eddy viscosity terms pointed out here. The origin of each
term can not be easily traced with the DIA approach, and thus ASM

was utilized to do this. The eddy viscosity on the 3rd iteration
becomes
) (3) _:_..ici - A nPP-¢ S TR z_k:f_ (1)
where _
’ = OUi

() -
P Up Ua ar,

Both the second and 3rd terms in (10) include 3rd order AR. The
second term results from the 1imbalance between production and
d1551patxon whereas the third term is from the products of 6.4 terms
in (8) with du,/0x;, and the &, terms in (8) with 0u,/dx;, and is
consequently related to the anisotropy of turbulence intensi:ties.
Based on these observations, it is assumed that 3rd order AR arises
from the deviation from equilibrium, and also the anisotropy of
turbulence intensities. For details, see Horiuti.¥

Here, we refer to the relationship between the Leonard term,
the Bardina model and the 2nd order AR. By using the Taylor
expansion,' Lij and C,,° are expressed as follows:

A = a . Az OU,OU; 4
T Wanan¥ tTooxeax TO(AY, (1)

9 9 4
~37 Wan o v tOAY.
The first and second terms of each expansion have a same form with
opposite signs, thus the total summation of Lij and Ci)® recovers the
Galilean Invariance.'” This, however, does not necessarily mean that
the remainder is negligibly small. Besides, the remainder

A2 du; QU

SV EETR (12)

corresponds to a part of AR of the SGS Reynolds stress eq.(5). AR
consists of three types of terms, namely

zautau) ZOulauk zaaka-il-k
A Oxr Oxx’ 4 Oxk 0x;°’ A dx; 0x; (13)
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The last two terms of (13) are absent in (11), thus the incorporation
of AR by combining the Leonard terms and the Bardina model ignores
these terms. Among these three terms in (13), the last term in
particular is from D, in the pressure-strain approximation terms
in ASM. In this respect, the neglect of this term may result in a

poor approximation of the pressure— strain terms, if the model
employed in ASM is accurate. Inclusion of D,,, however, violates
the invarience of the SGS Reynolds stress wunder the frame
rotation,’® unless appropriate constants are chosen. Based on his

statistical theory, Leslie * objects to the inclusion of Dy in (8).

Practically, in LES of plane channel flow, the magnitude of modeled
values by Di, is marginally small, if the recommended values '* are
chosen for the model constants. It seems that the neglect of the
last term in (13) does not seriously degrade the computation.

3. A priori’' test of subgrid scale models

In LES, k and € in_the previous section are replaced by the
SGS turbulent energy K¢= ui w /2 and Ce KG'?/A, respectively, giving
the time scale as A/Cc/K¢"? and the eddy viscosity as follows:

ve = Cy Zﬁ%T E, (14)

where E denotes the energy scale and Cv is a model! constan:. [f Ag
is chosen as E, the conventional Smagorinsky model

OU; OE} -
3y, T 3T (15)
can be obtained, assuming the equilibrium of SGS energy production
and dissipation.

We begin with 'a priori’ validation of the Smagorinsky model,
using the DNS data base of turbulent channel flow at Reynolds number
( Re; based on the wall friction velocity and the channel width )
of 380 with grid points of 128x129x128 in the =x,y,z directions,
respectively, generated employing Fourier—Chebyshev polynomials
expansions. The data is filteied with the Gaussian filter in the ¢
and = directions and the top~hat filter in the y direction, and
divided into GS and SGS components, reducing the LES grid point
numbers to 32,65,32 in the x,y,z directions, respectively. The
y-distribution of the correlation coefficient (C.C.) between the
model value for u; u; by the Smagorinsky model and exact value is

ve = (Cs8)? ¢ L e,e, 342

5 ) ey =

shown in Fig.1. C.C. is generally very low and , in particular,
becomes negative at y~0.04__and 0.96. Figure 2 shows the
y~distrivition of average of u, u, in the x-z plane. The model

value shows a prohibitively large peak at the locations where
negative C.C. is found in Fig.l1. This large peak had to be
suppressed by multiplying the length scale A by the Van Driest
damping function (1—exp (~u./A))'® with A.=25,%% impiying that Ag

may not be a proper energy scale. Here, we find a proper energy
scale E, while inserting the exact value obtained from DNS data as
K¢ into eq.(14). As is noted before, the terms within the square

bracket (()) in eq.(7) corresponds to the (2nd order) AR of S5GS
Reynolds stresses. It is; however, not practical in LES to directly

_5_




compute all of the terms, optimizing model constants Ciy and Cy.
Here, the fact pointed out in the previous section that the total
sum of the Leonard term and the Bardina model corresponds to (a part
of) 2nd order AR is utilized to approximate the 2nd term in the

square bracket. In this model, the new term

CAg A2 ( uu, - Uy u, ) ’ (16)
is superposed to the conventional Smagorinsky model. This term
can be readily computed when the Gaussian filter is used combined
with the spectral method. For an implementation of the finite
difference method to the approximation of___these terms, see

Horiuti.®™® C.C. between the model value for u, u; by this model
and the exact value showed no noteworthy improvement over the
Smagorinsky model.(The figure is omitted here.) Noting that in the
k-¢ model,® the optimized values for Ciy and Ci in (7) were rather
close to those to approximate the normal shear stress,'® next
validation is made on the model which chooses the wall normal shear
stress U, U; as the energy scale E. A similar idea has already been
adopted in Reynolds averaged models by Rodi.?’ When the exact value
of u; u; obtained from the DNS data is used as £ in eq.(14), C.C.
has been considerably improved as is shown in Fig.3, particularly
at_y~0.4 and 0.96. As can be depicted in the y-distribution of
<u, u; > in Fig.4, the mean model value is in a good agreement with
the exact value. It should be noted that no damping function is
introduced in eq.{(14), confirming the previous finding in the k-¢
model ® that the normal shear stress is more preferable as the
energy scale.

To incorporate the proposed model! into actual LES computations,
U, u; and K¢ must be represented by GS variables and accurately
approximated. .As is evidenced in the previous validation using the
model eq.(16), the 2nd order AR is not sufficiently accurate :to
approximate the anisotropy of turbulence intensities for the use in
LES. In place of AR, the Bardina model

———y———r — - 2
is adopted in the present study. K¢ is approximated in the same

manner. Piomelli et al.” noted the model which uses K¢ approximated
by eq.(17) as E in (14) combined with the Van Driest damping
function. The y-distribution of C.C. and the mean values are shown
in Figs. § and 6, respectively. Although C.C. 1is a little lower

than in Fig.3, the negative C.C. in the Smagorinsky model is
eliminated. As in Fig.4, without introducing any ad hoc damping
functions, the mean values are in a remarkably good agreement with
the DNS data. It must be noted here that the wall limiting

behaviour of the SGS Reynolds stress is not well satisfied by the
models eq.(14) and (17). Although most of commonly used damping
functions do not satisfy the limiting behaviour except for the one
proposed by Piomelli et a!,% it seems that incorrect wall behaviour
does not lead to inaccurate computation results. Now, a qualitative
explanation to the difference in the optimized Smagorinsky constant
in homogeneous flow (Cs~0.23),'" mixing iayer (Cs~0.16)*" and channel
flow (Cs~0.10)"> can be given: The anisotropy of GS turbulence
intensities becomes larger in this order and this fact will be
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reflected in the SGS turbulent energy, when the grid resolution is
not sufficient. Because of the wrong choice of the energy scale in
the Smagorinsky model, Cs had to be adjusted depending on the flow.
It may be possible that Cv becomes universal independent on the flow,
but Cs may not be sn.

4. 'A posteriori’ test of the proposed model

In this section, numerical results of LES when the SGS mode!
proposed in the previous section (eqs.(14) and (17)) is incorporated
into the actual computation, are briefly presented. KRe is chosen
equal to 1280, and 128, 129 and 128 grid points are employed in the
t,y,z directions, respectively. Mode!l constant Cy in eq.(14) is
selected equal to 0.125, and no damping function is included.

Fig.7 displays the mean velocity profile. The von karman
constant (k=0.4) and another constant (B=5.0) are in a good agreement
with experimental measurement.?® GS turbulence intensities of
streamwise and normal components are shown in Figs.8 and 9,
respectively. Note that the contributions from the Bardina model
are included in the intensities. For a comparison, experimental
measurement’’ and numerical results® obtained by using the
Smagorinsky model combined with the Van Driest damping function
are included in the figures. Overall agreement with experimental
measurement is good. The peak positions of turbulence intensities
using the proposed model are closer to the wall than in the previous
result, confirming the validity of the presented model.

5. Summary and discussions

A new subgrid scale Reynolds stress model is proposed. The
prominent feature of the proposed model lies in the incorporation
of 3rd order terms in the anisotropic representation of SGS Reynolds
stresses to the eddy viscosity, choosing the normal shear stress as
the energy scale. In the present model, previously found discrepancy
in the optimized values for -he Smagorinsky model constant can be
explained, and the use of the empirical damping functions can be
avoided, while maintaining a higher correlation with the DNS da:a
than in using the Smagorinsky model. Unlike commonly used damping
function of Van Driest type which globally reduces the eddy viscosity
magnitude at the same level of y., this model can make a local
reduction of the magnitude. The relationship between the Leonard
term, the Bardina model and the 2nd order AR is pointed out. The
validity of the proposed model is confirmed in ’a& posteriori’ test
Although the normal! shear stress can be almost uniquely chosen in
plane channel flow, further refinement is needed for its proper
selection in complex geometry, such as in a corner flow of backward
facing step, which will be lgft tg the future work.
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Abstract

In this paper we combine spectral element methodology with a subgrid scale model
based on renormalization (RNG) group theory to formulate an algorithm appropri-
ate for simulating turbulent flows in complex geometries. The method is then ap-
plied to flow over a backward-facing step in transitional and turbulent flow regime.
Preliminary results suggest that the RNG model can be applied faithfully even in
the transitional and early turbulent regime, where other turbulence models fail,

1 INTRODUCTION

Renormalization group theory (RNG) has found its way into fluid mechanics relatively
recently, particularly in developing turbulence theory [1], however it has already provided
a series of interesting theoretical and numerical results. A milestone for RNG theory in
fluid mechanics was the establishment of the so-called correspondence principle, stating
that in the inertial range the behavior of the small-scale Navier-Stokes turbulence is
statistically equivalent to the modeled Navier-Stokes equaticn with the addition of a
random noise term. This principle makes it possible to use all the formalism of classical
RNG theory. Recently, renormalization group methods have been developed [1], (2], (3]
to analyse a variety of turbulent flow problems. For homogeneous turbulent flows, such
important quantities as the Kolmogorov constant, Batchelor constant, turbulent Prandtl
number, rate of decay to isotropy, skewnes factor, etc. have been obtained directly from
this theory in good agreement with available data.

RNG methods involve systematic approxin.ations to the full Navicr-Stokes equations that
are obtained by using perturbation theory to eliminate or d=cimate infinitesimal bands
of small scale modes, iterating the perturbation procedure to eliminate finite bands of
modes by constructing recursion relations for the renormalized transport coefficients, and
evaluating the parameters at a fixed point in the lowest order of a dimensional expansion
around a certain critical dimension. The decimation procedure, wher applied successively
to the entire wavenumber spectrum leads to the RNG equivalent of full closure of the
Reynolds averaged Navier-Stokes equations. The resulting RNG transport coefficients
are differential in character as oppesed to ad hoc algebraic coefficients of conventional
closure methods. All constants and functions appearing in the RNG closures are fully de-
termined by the RNG analysis. Briefly, the RNG method provides an analytica! method
to eliminate small scales from the Navier-Stokes equations, thus leading to a dynamically
consistent description of the large-scales. The formal process of successive elimination of
small scales together with re-scaling of the resulting equations results in a calculus for
the derivation of transport approximations in turbulent flows.




An obvious advantage of RNG models over other standard models is that they apply also
in the low Reynolds number limit and thus potentially can be used to describe the late
stages of transition and early turbulence. This result has been reconfirmed in the recent
simulations of Yakhot et al. [4] and Piomelli et al. [5] who studied turbulent channel flow
and boundary layers. Despite the fact that the initial conditions employed corresponded
to laminar flow, transition to turbulence was faithfully simulated as in standard direct
simulations. The RNG subgrid model provides an expression for the eddy viscosity with
correct limits both in the high and low Reynolds number range, namely the molecular
viscosity and the Smagorinsky equation respectively. Application of the subgrid scale
model to complex-geometry flows where a broader range of scales typically exists has not
been performed yet.

In this work we consider the flow over a backward-facing step and employ RNG/large-

eddy computations to simulate transitional and early turbulent states. A parallel study by

Kaiktsis et al. [6] investigates transitional states of the same flow using direct simulations.
The paper is organized as folows: In section 2, we present a review of the RNG formalism
for homogeneous turbulenc. and its extension to finite systems. In section 3 we describe
the discretization procedurs in solving the renormalized equation of motions; and finally,

in section 4, we present some preliminary results based on spectral element/large-eddy
simulations.

2 RENORMALIZATION GROUP THEORY

In this section we develop a subgrid scale model for inhomogeneous turbulence following
the derivation presented first in [1]. To this end, we first review the infrared limit of RNG
theory for homogeneous turbulence. In particular, we consider the following system of

equations describing the motion of an incompressible fluid stirred by an external force
f,

é-‘-,-+V-V7v = -—-v;}—’-i-l/ov""*'f (la)

ot
V.v =0 (1b)

where p is the pressure, v is the molecular viscosity, and p is the density. The force has
an energy spectrum given by
kik;

< fL(kw)f,-(k’w') >= 2(27)* Dok ~[6:5 — 73"]5(1( + k)o(w + o) (1c)

The idea of the infrared RNG mathod is io eliminate modes from the wavenumber strip
defined by Ae™" < k < A, near the ultraviolet cutoff A. The system resulting from the
elimination of these modes involves modified interaction coefficients and new nonlineari-
ties, as well as modified viscosities and forces. The resulting equations are also rescaled
and recasted in a form similar to the original system (1). The first step of the RNG

procedure is to Fourier transfrom equations (1) and solve for the transformed velocity
field as follows,

tAo

(k) = Gf(h) = 526 Pren() [ wm(@enlk - D) (2a)




where k = (k,w) and the harmonic propagator G® = (—iw + vok?)~!. The rest of the
parameters are defined as

Plon(k) = b Pa(8) + b P (R); Pin() = b — 28 (20)

Here )¢ is a formal parameter introduced for the iterative procedure.

Next, the transformed velocity field v is split into two components: v<(k) with 0 < k <
Ae" and v>(k) with Ae™ < k < A, the former being the resolvable part, while the latter
is to be eliminated by repeated substitution. This process of elimination generates an
infinite expansion for v< in powers of Ag. Keeping only terms up to second order in A
then a correction term to the bare viscosity vok? is generated, which after the integration
over the frequency space —oo to oo and the wave space Ae~" to A has the form,

A?Do efr
Av = Ad QA‘ 4 (3)

and Ay is a constant computed exactly in terms only of the space dimensions (d) [1).
Thus, the viscosity resulting from elimination of the modes v is,

4r
v=wv(l+ Ad/\ze -1

) (4a)

where the dimensionless coupling constant X, is

(4b)

The above results are valid in the limit » — 0. It is possible, however, to eliminate a
finite band of modes by iterating the above procedure of eliminating an infinitesimally
narrow band of modes; this will result in wave-dependent viscosity v = v(r) and coupling
constant A = A(r). These functions can then be determined by taking the limit r — 0 in
equation (3) in order to obtain the differential equation,

dv - =9, /\oDo 4,

= 2 2
- Ag(r)A(r) and N(r)= A )A‘ (5a)
The solution to this equation is,
Wr) = vl + AT 1))*/3 (5b)
Mr) = ) e"(1+3A,u\’(e" 1) (5¢)

This equation gives a k—dependent viscosity in the infrared limit (r — o0) which
leads to an energy spectrum similar to the Kolmogorov &k~5/3 spectrum for the inertial-
range. An exact comparison, in fact, with the Kolmogorov spectrum provides the relation
between the amplitude of the stirring force Dy and the mean dissipation rate (€ &< Do)
and thus equation (5b) can be rewritten as

v(r) = w1 + (e = 1) (6)

where a = 0.120 as computed in terms of Aa.
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It can be shown that a more realistic model whose stirring force satisfies:

k; kj

< f,-(kw)f,(k'w') >« Ek-d[&j ~ T

16(k + K')8(w + '), Yk > k. (7)

Vk, > L~! (where L is an integral scale of the flow) also gives a Kolmogorov spectrum
in the limit k — oo. This is true since all contributions originating from the strip
L~ < k < k. are negligible in the limit & — oo. This result is the key idea in extending
the above theory in finite systems and inhomogeneous turbulence. In particular, we
assume that a turbulent fluid in a finite system in which the flow is locally homogeneous
exhibits the Kolmogorov behaviour in the intermediate range k. < k < kg, where ky
denotes the dissipation cutoff. In addition, it can be shown directly from the equations
(1) and the definition of € that & ~ €<, which in turn can be expressed in terms of the
resolvable field and the (enhanced) viscosity, i.e.

av<; + ov<;

(x,8) = v(r) gt + 52 ®)

In order to construct a subgrid scale model based on the above formulation we identify
the mesh size A as the smallest unrenormalized scale (A = A~'e") and employ a Gaussian
filter of width A = 2A to obtain,

a€

v=ul+ H((%)‘ug

at- O (9)

where H(z) is the Heaviside function, and C = 100. An alternative equation for evalu-
ating A in the case of nonuniform meshes is the following

M b dkdpdg
4
&= "] vt o (10)

Here A; = 7/A; (fori=1,2,3)and A; = 2A equals twice the computational mesh in each
direction respectively. The above integral can be readily evaluated by breaking it up to
three asymptotic integrals and a finite triple integral that can be computed numerically.
In cases of simple geomnetries (i.e. plane channels) the integral can be evaluated through
algebraic relations [4].

The assumption of local homogeneity implies that the eliminated scales are much smaller
than the distance y from the nearest wall, for only such scales can be isotropic. Thus A
must decrease as the distance to the nearest wall decreases (this is of course automatically
true for all spectral type discretizations). It follows then from (9) that v — ypas y — 0.
On the other hand, in regions far from the wall equation (9) reduces to
Bv<:  Bv<;
NN T At L] 11

”C'A‘azj+az;| (11)
where C, = 0.005. This last equation is the same as the classical Smagorinsky eddy
viscosity model [7].

The corresponding renormalized equation of motion (incorporating the full stress tensor)
for v< is,
<
%-{-W-VW=—-Y—p+V-u[Vv<+VTv<]+f< (12)
P




where f< refers to the renormalized force of the original system in equation (1). It can
be shown that f< o k? and thus is negligible (compared to the bare force which scales as
k=3) everywhere but in the buffer region. In the next section we discuss the discretization
of this equation subjected to the incompressibility contraint.

3 SPECTRAL ELEMENT METHODOLOGY

To simplify the notation in the following we omit the superscripts, and rewrite the equa-

tion of motion as follows
Ov Vo

E = -—;— +oViv 4+ N(v) (13a)
where the last term includes all nonlinear and forcing terms as well as the viscous terms,
ie.

N(v) = _%[v VAV (v V) + T+ V(v = B) Vv + VTV (13b)

where v here denotes the total viscosity' given by equation (9), while 7 is an artificial
(constant in space) viscosity introduced here i~ tability reasons. The convective terms
are written in skew-symmetric form for aliasing control purposes [8]. Numerical solution
of the above system of equations will be obtained in a three-dimensional computational
domain ). Before we proceed to the spatial discretization of the equations we first review
briefly the time-stepping algorithm.

3.1 Semi-Discrete Formulation

The separation of terms in equation (13) leads naturally to a splitting scheme of mixed
explicit/implicit type. In particular, the recently developed high-order splitting algorithm
based on mixed stiffly stable schemes is used [9]. Considering first the nonlinear terms
N we obtain,
v - Z.fz-l a.vh1 J-1 _
= T S AN (142)

q=0

where aq, B, are implicit/explicit weight-coefficients for the stifly stable scheme of or-
der J (see [9]). The next substep incorporates the pressure equation and enforces the
incompressibility constraint as follows,

‘:, -V — _Tpn+t
= = -V (14b)
Vv =0 (14¢)

Finally, the last substep includes the viscous corrections and the imposition of the bound-
ary conditions, i.e.
70Yn+1 -

A7 = g2yl (14d)

where v, is a weight-coefficient of the backwards differentiation scheme employed (9].

The above time-treatment of the system of equations (13) results in a very efficient
calculation procedure as it decouples the pressure and velocity equations as in (14bc)
and (14c) respectively. As regards time-accuracy of this splitting scheme a key element
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in this approach is the specific treatment of the pressure equation, which can be recasted
in a form

2,,n+l . i
v P =V (At) (153’)
along with the consistent high-order pressure boundary condition (see [9])
apn+1 J-1 J=1
5—=n- [= 3" BN(v™ 1) — Re™ 3~ B[V x (V x v*79)] (15b)

q=0 q=0

where n denotes the unit normal to the boundary I'. Equation (15) therefore is a
Poisson equation with constant coefficients, which can be rewritten in the standard form

Vi = g(x) (16)

where we have defined ¢ = p**!, and g(x) = V- (K{’?) In the following section we will
refer to this equation in order to discuss the spatial discretization of equations (14) in
three dimensions using the spectral element method.

3.2 Spatial Discretization

The spatial discretization of (14) is obtained using the spectral element methodology
[10], {11}, [12]). In the standard spectral element discretization the computational do-
main  is broken up into general brick elements (hexahedra) in three-dimensions, which
are mapped isoparametrically to canonical cubes. The accuracy of interpolating the
geometry therefore is of the same order as the accuracy of interpolating the field un-
knowns. Geometry, unknowns and data are then expressed »s tensorial products in
terms of Legendre-Lagrangian interpolants. The final system of equations to be solved is
obtained via a Galerkin variational statement. In particular, the computational domain
{1 is covered with K = 48 spectral elements of resolution Ny = N; = N3 = 12 in each
direction.

To illustrate the spectral element methodology in more detail let us first consider the
model equation (16) which represents the elliptic contributions of the governing equa-
tions. If we define H} the standard Sobolev space that contains functions which satisfy
homogeneous boundary conditions, and introduce testfunctions ¥ € H}, we can then
write the equivalent variational statement of (16) as,

oy 84 ,
_/ng-z—jaz;ds = --/01[1gds. (17)

The conforming spectral element discretization corresponds to numerical quadrature of
the variational form (17) restricted i the space Xp C H}. The discrete space X, is
defined in terms of the spectral element discretization parameters (X, Ny, N3, N3), where
K is the number of spectral elements, and Ny — 1,N; — 1, N3 — 1 are the degrees of
piecewise high-order (Legendre) polymonials in the three directions respectively that fill
the space X,. By selecting appropriate Gauss-Lobatto points f:a and corresponding
weights: ppar = pppep1, equation (17) can be replaced by,

K Nt i Ny a¢ o¢ K Nt N3 Ny

DIDIPIPILATIE s ol T B IPIPD Pratdpal¥9les,- (18)

k=1p=0q=0 =0 k=1p=0q=01=0

Here J*  is the Jacobian of the transformation from global to local coordinates (z, y, z) =
(r,3,t), for the three-dimensional element k. The Jacobian is easily calculated from the




partial derivatives of the geometry transformation at the nodal point (pql) via collocation
as follows
J = z(zry, — ToYe) + z,(zeye — T Ye) + 2e(Taye - TeY, ) (192)

The partial derivatives ara calculated from standard Lagrangian interpolations as for

example
(z?)nl = memmql (19b)

where Znq is the z global coordinate of node (pql); here the derivative operator is
defined as D;; = '%-(f.-), and h; is the Lagrangian interpolant,.

The next step in implementing (18) is the selection of a basis which reflects the structure
of the piecewise smooth space X). We choose an interpolant basis with components
defined in terms of Legendre-Lagrangian interpolants, hi(r;) = 6;;. Here, r; represents
local coordinate and §;; is the Kronecker-delta symbol. It was shown in [10], [13] that
such a spectral element implementation converges spectrally fast to the exact solution
for a fixed number of elements K and N, 33 — o0, for smooth data and solution, even in
non-rectilinear geometries. Having selected the basis we can proceed in writing the local
to the element spectral element approximations for test functions, data, and geometry
and obtain the system matrix; details are presented in [12].

The natural choice of solution algorithm for equation (18) is an iterative procedure; in
this case the large matrices (i.e. P%, . ) need not be stored, but instead compute during
the time-stepping the matrix-vector products (i.e. P&, dmng). Two different iterative
techniques have been implemented in this context: conjugate gradient techniques, and
multigrid methods (13]. A difference of the formulation proposed here as compared to the
formulation in [13] is that the high-order splitting scheme adopted in this work results
in separate, elliptic equations for the pressure and velocity that can be very efficiently
and robustly solved using those iterative techniques without the need of case-dependent
preconditioners or other convergence acceleration techniques.

4 RESULTS

Here we report the results of applying the RNG based subgrid LES model to predict
transition in complex geometry flows. Earlier work by Yakhot et al. [4] and by Piomelli
et al. (5] in channel flows and boundary layer flows respectively suggests that transitional
states can be faithfully simulated by this LES model. The problem we consider here is
flow over a backward-facing step of the same geometry (expansion ratio approximately
two) as the one studied by Armaly et al. [14]. The size of the separation zora2 is a unique
function of the Reynolds number Re for fixed inflow conditions, and thus this flow is
a prototype for transition in massively separated wall-bounded flows [6]. The Reynolds
number 1s defined as Re = g— 'maz(2h)/vo, where h = 1 is the height of the inlet channel,
and-Upmaqz is the maximum velocity at the inlet. The computational domain is described
in detail-in [6]; briefly, the domain is 35 units long and the spanwise length is L, = 27
corresponding to a wave number 5 = 1. The inflow prescribed velocity profile is a blunt
profile of the form U;(y) = 1 — (2y)*, ‘periodic boundary conditions are imposed in span,
while Neumann/sponge type conditions are imposed at outflow 15].

In all the results reported here, the RNG subgrid model was active throughout the
computation; the production of tion-zero eddy viscosity (v > 1) is then an indication of
transition. The first run is-at Reynolds number Re = 2222; instantaneous streamlines
are plotted in Figure 1 showing the existence of multiple eddies inside the separation
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FIG. 1. Instantaneous streamlines at Re = 2222,

region. In this case the subgrid model does not produce any eddy viscosity at resolution
(K = 48; Ny = N3 = N3 = 12). The flow therefore is sufficiently resolved using direct
simulation only. The instantaneous multi-eddy structure of the time-averaged fiow at this
Reynolds number (Figure 2) has dissappeared and only a smaller size eddy is present at
the step corner. This feature seems to be a high Reynolds number effect and persists to
the fully turbulent regime. At Reynolds number Re = 1000 which marks the beginning
of the transition process the flow does not reverse sign inside the separation zone. This
is seen in Figure 3, where we plot the streamwise profile very close to the lower wall from
the step location to the outflow.

T Bt _——— ]

FIG. 2. Streamlines of time--average flow at Re = 2222.

Starting the simulation fror: the velocity field generated at Re = 2222 and increasing
the Reynolds number to Re = 4444, a non-zero eddy viscosit s distribution is established
at the high-strain regions of the flow, i.e. the shear layer emanating from the step corner
and near the walls. Increasing the Reynolds number further to Re = 8888 (inside the
fully turbuleni regime) the eddy-viscosity distribution becomes much broader as secn
in the sequence of Figure 4, which show instantaneous values of the total viscosity in
different planes parallel to walls. The corner eddy resolved by the direct simulation at
Re = 2222 is also captured by the large eddy simulation for the fully turbulent regime (in
agreement with the experimental results of Tani et al. [16]). This is shown in Figure 5a-b
where we plot the streamwise velocity profile very close to the lower wall at Reynolds
number Re = 4444 and Re = 8888, respectively. The positive values very close to the
step corner indicate the existence of the eddy, while the further zero gives the value of the
reattachment length. This value is in agreement with the experimental results of Armaly
et al. [14] within ten percent accuracy. The reason for this discrepancy as explained in
detail in [6] relate to variations of the inflow velocity profile.
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FIG. 4(a—d). Instantaneous total through the nearest to the lower wall
viscosity distribution at Re = 8888. collocation points (a) Re = 4444,

(Blue corresponds to molecular viscosity). large—eddy simulation; (b) Re = 8888,
large—eddy simulation.

The results presented in this paper are preliminary and can only provide a qualitative
assessment of the resolution capabilities of the RNG subgrid model in describing inho-
mogeneous turbulence and, in particular, separated flows. Work still underway addresses
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the issue of mesh dependence and compares in detail results of large eddy
simulations with direct simulations for the same flow.
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Abstract

The large-eddy simulation technique is applied to the problem of transition to turbulence.
The focal example is transition in plane channel flow. Both a priori and a posteriori analyses
are presented. In the former the results of a well-resolved direct numerical simulation of
transition are examined for their implications for subgrid-scale models, and in the latter the
results of actual large-eddy simulations of transition are compared with those of the direct
simulation. Subgrid-scale backscatter (that is, energy flow from small to large scales) is found
to be significant at all stages of transition; the dynamic eddy viscosity model [Germano et al.,
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1 Introduction

Transition from laminar to turbulent flow has many facets. The specific phenomena of
particular interest ~ us pertain to the technological issues of the prediction, modeling and
control of transitiuu on aerospace vehicles. Accurate prediction and modeling is especially
crucial to the forthcoming generation of advanced aerospace vehicles such as the High Speed
Civil Transport and the National Aerospace Plane [1]. For design purposes one needs to
know not only the location of transition onset, but also the extent and properties of the
transitional zone. In most cases the peak skin friction and wall heat transfer occur near the
end of the transitional zone. Accurate predictions of these peak values are especially crucial.

Transitional zone models can be developed both for the Reynolds-averaged Navier-Stokes
(RANS) equations and for large-eddy simulations (LES). In the RANS approach models are
developed for the higher-order moments of the ensemble-averaged Navier-Stokes equations,
whereas subgrid-scale (SGS) models for large-eddy simulations are directed towards the small
spatial scales of the spatially-averaged Navier-Stokes equations. For engineering applications,
of course, one wants a RANS transitional zone model and there is a strong practical pref-
erence for a model which blends smoothly into an acceptable model for the fully turbulent
zone. Virtually all the extant models for the transitional zone are modifications of RANS
turbulence models. For recent reviews of RANS transitional models consult {2,3,4].

The opportunities for calibrating RANS models of the compressible transitional zone
are quite limited. Until recently experimental data has been the only benchmark. Surface
measurements are essentially all that is currently available from supersonic flight and quiet
tunnel measuremencs and there are virtually no suitable measurements whatsoever at hy-
personic speeds. It is only at essentially incompressible speeds that detailed flow field data
are available.

Fortunately, numerical simulations of transition appear on the verge of providing an al-
ternative source of reliable, detailed flow-field data for the transitional zone. The current
status of this field is summarized by Kleiser and Zang[5]. To date, direct numerical simula-
tion (DNS) of transition in wall-bounded flows has been employed primarily for studying the
basic physics of laminar-to-turbulent transition. Such computations, based on the Navier-
Stokes equations without recourse to any type of physical model, are extremely demanding
computationally for the later stages of transition. In simple low-speed (essentially incom-
pressible) flows it is now possible to compuie reliably the entire transition process from
lamirar to fully-developed turbulent flow in extremely simple situations [6,7]. However, at
present this is still only feasible for forced rather than for natural transition, i.e., for flows in
which transition develops from imposed, specific waves with finite amplitude (on the order
of 1%) rather than from the natural disturbance background (which is composed of a broad
spectrum ~° waves). Due to the massive computational effort required by this technique,
however, direct simulation of the governing equations is, for the foreseeable future, limited
to simple flows and low Reynolds numbers. The computational demmands of the compressible
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transition problem are even more severe: the length scales are shorter, the transitional zones
are longer, the equations themselves are more complex, and, ultimately, shock wave and real
gas effects must be taken into account. For the solution of preblems of engineering inter-
est, other, less computationally intensive, methods are required, and these will necessarily
involve some degree of modeling.

A less intensive numerical technique that has been successfully applied to the study of
turbulent flows is large-eddy simulation (LES). In LES only the large, energy-containing
scales of the motion are computed directly; the effect of the small scales (subgrid scales),
which appears in a residual (or subgrid-scale) stress term, is modeled. Since, in turbulent
flows, the small scales tend to be more isotropic and homogeneous than the large scales and
do not depend very strongly on the boundary conditions, their effect can be represented by
fairly simple models. This approach offers better hope of furnishing data on the transitional
zone for compressible flow than does DNS. Indeed, a conceivable path to the objective of
supplying transitional zone flow-field data for high-speed flow starts with validating LES for
incompressible transitional flow against both experimental data and DNS results, continues
with validating LES for simple compressible transitional flow against the very limited set
of experimental and DNS data, and concludes with applying LES to general compressible
transitional problems. At present only the first tentative steps along this path have been
taken.

Large-eddy simulations have been successfully applied to a variety of incompressible tur-
bulent, wall-bounded flows such as plane channel flow (8,9,10], boundary layers [11] and
channel flow with transpiration [12], but only recently have efforts been made to study tran-
sition to turbulence using LES. Early work [13,14,15] was characterized by the application
of we!l-established subgrid-scale (SGS) stress models to the simulation of laminar-turbulent
transition. From the technological point of view, however, the issue is not whether LES
can start with a laminar flow and end up with a turbulent flow, but rather whether it com-
putes the transition correctly, i.e., with the proper duration and properties. Piomelli and
co-workers were the first to use the databases generated by well-resolved direct numerical
simulations of transition to study the behavior of the SGS stress tensor during transition
and to evaluate actual LES of the transitional zone. Piomelli et al. [16] observed that dur-
ing the ronlinear stages, and in particular during the second-spike stage, the subgrid-scale
dissipation (i.e., the energy transfer from large to small scales) is significantly smaller than
in turbulent flow. Thsy deviszd an intermittency-like modification of the Smagorinsky [17]
model which allowed accurate prediction of the early stages of transition in a flat-plate
boundary layer {18] and piane channel flow {i8]. Subsequently, in [19], they again calculated
a transitional boundary layer flow using a subgrid-scale stress model based on the reaormal-
ization group (RNG) theory [20]. This predicts zero eddy viscosity as long as the magnitude
of the strain rate tensor is less than some threshold value. A recently devised dynamic
subgrid-scale model was also successfully applied to plane channel flow [21].




This article will describe these particular subgrid-scale models for incompressible tran-
sitional flow, review the a priori tests of the models against direct numerical simulation of
plane channel flow, and present a posterior: results of actual LES using the various models.

2 Formulation

In large-eddy simulations of incompressible flow the dependent variables (velocity u; and
pressure p) are decomposed into a large-scale component (denoted by an overbar) and a
subgrid-scale (SGS) component. The large-scale field is defined by the filtering operation:

Fx) = [ G, %) f(x)i, (1)

where the integral is extended over the entire spatial domain and G = G,G;G3, where G;
is the filter function in the ith direction. In the present work z; (or z) is the streamwise
direction, z, (or y) is the wall-normal direction, and z3 (or 2) is the spanwise direction; uy,
ug and us (or u, v and w) are the velocity compnrnents in the coordinate directions. The
subgrid-scale component is denoted by a prime, ana is defined as

fl=f-F. (2)

In the present work, a sharp cutoff filter (22] has been applied in all directions.

The filtered Navier-Stokes and continuity equations, which describe the evolution of the
large, energy-carrying eddies, can be obtained by applying the filtering operation to the
incompressible Navier-Stokes and continuity equations to yield

o0; a . _ _ 0p 1 8% ar;;

%t T a5 ) = 5t RGegs, 7, 3)
ow;
'8—;; = 01 (4)

in which a reference length and velocity scale are used to make %;, B, z;, ¢ and the molecular
kinematic viscosity v dimensionless and to define tiie Reynolds number Re; repeated indices
denote summation. The effect of the subgrid scales appears in the SGS stress, r;; = W, —
T;u;, which must be modeled. For example, in eddy viscosity models, the SGS stress is
approximated as

— <., ..a2 12 (5
= "'2!’1‘.5,] T 5.1 sgsl V1 (D)

where &;; is the Kronecker delta function, ¢2, = 74 is the subgrid-scale energy (which is
added to the pressure), S;; is the large-scale strain-rate tensor
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and vr is an eddy viscosity. The eddy viscosity originally proposed by Smagorinsky [17],

denoted here by vg, is
Vg = 05A2\/23;jg51, (7)

in which Cs is a constant and A is a length scale, usually taken as
= (A:cAyAz)I/s. (8)

We have departed here from the usual convention in which Cs appears in Eq. (7) as C%
because we wish to admit models in which Cy is negative, at least locally.

To examine the effect of the SGS stress model on the resolved scales, consider the trans-
port equation for (twice) the resolved kinetic energy 3 = w4;

0 8 1,y _ O _ 1 og°
7 5 (@0) = 5‘"(“275‘2‘ * % az,)
2 0u; 0g;
B R68x16x1+2njgij' )

One half of the last term on the right-hand side of Eq. (10) will be referred to as “subgrid-
scale dissipation”, €,5, = 7;,3;;; it represents the energy transfer between resolved and
subgrid scales. If it is negative, the subgrid scales remove energy from the resolved ones
(forward scatter); if it is positive, they release energy to the resolved scales (backscatter).
The backward and forward scatter components of ¢,4,, respectively denoted by e, and e_,
are defined as

; 1
€+ =3 (esgs + Ieagsl) ) €. =r

2 5 (eags - Iesgs!) . (10)

It is easy to see that eddy viscosity SGS stress models of the Smagorinsky type are absolutely
dissipative, so long as Cs > 0, since they then assume that the eddy viscosity vr is positive,
which gives

T;’,’-‘?;J‘ = —2v75;;5;; < 0. (11)

To study the behavior of the SGS stresses and dissipation in transitional flow we have
used the databases obtained from the direct simulation of transition in a plane channel at
Re = 8,000 (based on the channel half-width § and the laminar centerline velocity, U,), with
periodic boundary conditions in the sireamwise and spanwise directions. Initial conditions
consisted of the parabolic mean flow, on which a 2-D Tollmien-Schlichting (TS) mode of
2% amplitude and a 3-D TS mode of 0.02% amplitude were superimposed. The periodicity
lengths in the streamwise and spanwise directions were Ly = 27 and L, =" 47/3, respectively.
The initial conditions and Reynolds number matched those of the direct simulation described
in [23). This finely-resolved DNS used 216 x 162 x 216 grid points, and the truncation errors
in the primitive variables was less than 0.03% at all times. The spanwise symmetry of the
initial conditions was exploited to reduce the computational effort by a factor of two. For
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details on the particular numerical method, the physics of channel flow transition, and results
for closely related problems, see [24].

We should note that this is a temporal transition problem, as opposed to the spatial -
tiansition problem of technological interest. The extension of LES from temporal to spatial
transition problems is a necessary task, whose prime complication is the increased computing
demands (by about an order of magnitude) for the spatial problem.

This simulation has been conducted to date up to a time of 330 (made dimensionless by
6 and U,). The results of the present DNS at Re = 8000 are qualitatively similar, in both
the transitional and tucbulent regions, to the pioneering simulation of Gilbert & Kleiser [7]
at Re = 5000 (see [23]). From ¢ = 0 to { = 165 the evolution is well-described by a
combination of linear stability theory and secondary instability theory [25]. The strongly
nonlinear, so-called “one-spike stage” occurs between ¢ ~ 165 and ¢ = 175, the “multi-spike
stages” between ¢t &~ 175 and ¢t & 185, the “laminar breakdown” phase commences at ¢ ~ 185,
the peak wall shear stress occurs near ¢ = 220, and fully-developed turbulent flow ensues at
about ¢ = 240. The fully-turbulent flow is characterized by a Reynolds number based on the
wall shear velocity of Re, = 320, a Reynolds number based on mean centerline velocity of
Regr = 6200, and it has a computational domain in wall units of L}2010 and L} = 1340.
The “transitional zone”, between ¢t = 165 and ¢ = 240, is the focus of the present work.

3 A Priori Analysis

Piomelli et al. [16] performed an a priori analysis of channel flow transition for ¢ < 200
using DNS data in which they focused on the early part of the transitional period. They
found that the SGS stresses 7;; and the SGS dissipation ¢,4, were significantly different from
their counterparts in fully-developed turbulent flow. They noted that there were substantial
regions of the flow with negative SG{ dissipation, indicating the presence of a reversed energy
cascade. In other words, transitional fiow exhibits backscatter.

The issue of backscatter has bee1 addressed recently by Piomelli et al. [26], with an
emphasis on turbulent flows, but with some results extracted from the transitional data
base described in the preceding section. To investigate the character of backscatter the
velocity fields obtained from the direct numerical simulation of channel flow transition were
filtered to yield the exact resolved and subgrid-scale velocities, and the exact subgrid-scale
dissipation. Figure 1 shows the SGS dissipation at 3 representative times: ¢ = 170 (the one-
spike stage), t = 200 (during laminar breakdown), and ¢ = 220 (near the peak wail shear
stress). SGS dissipation and backscatter are normalized by the volume-averaged viscous
dissipation < €, >y:

< €y Dy=

1 Ly fLs p+1 9
L.6..6. drdudsz. 12
T /0 /0 [ =58, dzdydz (12)
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Figure 1: Subgrid-scale dissipation normalized by < €, >v; cutoff filter. Plane-averaged
dissipation < €,95 >; -=- root-mean-square fluctuation of €,g,; -+ plane-averaged backscat-
ter < €4 >. (a) t = 170, A; = 8Az;, a = 0.01; (b) t =200, &; = 6Az;, a = 0.07; (c) t = 220,
A; = 6A.‘1:,', a=0.11.

The amount of filtering is characterized by «, the ratic of subgrid scale kinetic energy,
< g%, >v, to total turbulent kinetic energy, < ¢* >v, and by the ratio of filter width, A,
to grid size, Az;. Since filtering was only applied in the plane parallel to the wall, the ratios
A;/Az; reported here only refer to the streamwise and spanwise directions. Unless otherwise
noted, all quantities are made dimensionless by the channei Lalfwidth 6, the fluid density p
and the centerline veiocity in iaminar flow U.

Figure 1 indicates that the backscatter contribution to €4, is much larger than the mean
at all times (and also independent of filter width). Although the subgrid scales extract
energy from the large scales in the mean, large values of €4 and e_ can be expected. The
fraction of points in each plane which experience backscatter (shown in Figure 2) is close to
50%, virtually independent of time and distance from the wall.
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Figure 2: Fraction of grid points at which €., > 0; cutoff filter. t =170, A, = 8Az;,
a = 0.01; ---t = 200, A; = 6Az;, @ = 0.07; ~eeeee t =220, A; = 6Az;, a=0.11.
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Figure 3: Plane-averaged SGS stress < 1, >; cutoff filter. t = 170, A; = 8Aux,,
a =0.01; ---t =200, &; = 6Az;, a = 0.07; -eeev t =220, A; = 6Az;, a =0.11.

Fraction of points

Figure 3 shows the plane-averaged SGS shear stress < 72 > at the same instants. Ini-
tially, the stress is very small, reflecting the absence of small scales in the flow. The positive
stress which is observed for ¢ = 170 at y/6 = —0.8 is to a large extent responsible for the
positive mean SGS dissipation which also occurs around this location.

4 Subgrid-scale Stress Models

The model considered by Piomelli et al. [16] and Piomelli and Zang [18] for the subgrid-scale
stress in transitional flow was the scaled Smagorinsky model, which has the form of Eq. (5)
with the eddy viscosity given by

br = [‘/ (1 - e_y+/25)]2 CsA?/25;;Sy;. (13)

A superscript + indicates a quantity made dimensionless by the kinematic viscosity v and the
shear velocity u, = (r,/p)"/?, where 7, = u[0%/0y], is the wall shear stress and p the fluid
density. The scaling factor v = (H; — H)/(H; — H;) (in which H is the shape factor, given

8




by the ratio of the displacement thickness to the momentum thickness, and the subscripts
| and ¢ refer, respectively, to laminar and fully-developed turbulent flow) was introduced to
decrease the dissipation by the subgrid scales during the early stages of transition [16].

Piomelli et al. [19] modeled the SGS stress with an algebraic eddy viscosity model based
on the renormalization group theory of Yakhot and Orszag [20]. With this approach the
total viscosity, vy = v + vr [where vr is the eddy viscosity to be used in Eq. (5)] is given
by the RNG formula [20]

I 13
Vtot =y[1+H(—-S-3-°--c>J (14)

v
where H(z) is the ramp function:

z forz>0

H(z) = { 0 otherwise, (15)

C is a constant, v is the molecular viscosity, and vg is the Smagorinsky [17] eddy viscosity,
given by Eq. (7).

If the argument of the ramp function H(z) is greater than zero, Eq. (14) has the ap-
pearance of a cubic equation for the total viscosity. In reality, however, it is a functional
equation, since vy, and vg are related through the renormalized Navier-Stokes equations.
The numerical implementation of the model chosen in {19] was the explicit formula of eval-
uating the total viscosity at the present time step, v,, by substituting the viscosity at the
previous time step, vj ', in the right-hand side of (14) to yield

2,n-1 1/3
U.S'Vtot _ C]

v3

Vpy =V [1 + (16)
The filter width A was given by Eq. (8). Recent results [27] for LES of turbulent flows
suggest that an alternative length scale formula specifically tuned for RNG models might be
preferable.

An alternative model, the dynamic eddy viscosity model, was developed recently by
Germano et al. [21] and applied to both turbulent and transitional channel flows. They
defined two filtering operators: one is the grid filter, G, defined in Eq. (1), with characteristic
filter width -A:, while the other, the test filter, ‘5", is associated with the filter width A. In
addition, let G =CGC and 5 = A/& > 1.

In the dynamic eddy viscosity model the eddy viscosity is given by Eq. (7), in which Cs
is replaced by a coefficient, C, which is computed from the instantaneous state of the flow.
The use of the two filters allows extraction of information regarding the smallest resolved




oy

scales, which is then used to optimize the parameterization of the subgrid scales. The form
of the coefficient C used in [21] is

1 <‘£kﬂ§;(>>
LI R ,
2R < (518 mnBmn > ~B < [5[5,43,, >

in which the resolved turbulent stress, £;;, is defined as

I (18)

C(yat) = (17)

ft

«

Lij = U — U

a tilde indicates the application of the test filter, and a planar average is denoted by < . >.
The coefficient C used in [21] is not completely localized; the average over planes parallel to
the wall could, however, be relaxed to a more localized average, although some sort of average
is necessary to avoid ill-conditioning arising from poin.wise vanishing of the denominator in
Eq. (17). The modeled SGS stress tensor is then given by

= < Ludu > K (19)

v ('5“/'&)2 < Ig’l?;’m,,?m,, >—< IS‘TST’,,,,S’W >

Note that the model gives zero SGS stress everywhere that L,; vanishes (as long as the
denominator remeains finite). Such is the case in laminar flow. As Germano et al. [21]
observed, this model also produces the correct near-wall behavior of the SGS stress, and the
modeled subgrid-scale dissipation, €,, = 7/7'Sj;, can be either positive or negative. Thus,
the model does not rule out backscatter. The only adjustable parameter in the model is the

ratio 7.

5 LES Results

The three transitional SGS stress models described above have been applied to the chan-
nel flow transition problem described at the end of Section 2. The sharp cutoff filter was
employed. The meshes for the LES used up to 48 x 72 x 48 grid points (smaller meshes
were used for the early part of the evolution - until ¢t = 165 - during which the flow could
be computed reliably with no SGS model; as increased resolution was required, the mesh
was refined to its final value). The DNS imposed spanwise symmetry, the LES calculations
were free of this constraint; although the initial condition which was spanwise symmetric;
the LES results eventually became asymmetric due to the influence of round-off errors.

In the case of the scaled Smagorinsky model, the model constant Cs was set equal to
0.01, and the values 5/2 and 1.7 were used for H; and H;. The numerical results, at least
in the fully-developed turbulent regime, are not expected to depend much on the values of
H; and H,: turbulent statistics are insensitive to changes in Cs of the order of 20% [9]. For
the RNG model, the values recommended by Yakhot and Orszag [20] were chosen for the
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Figure 4: Time evolution of the wall shear. -t Scaled Smagorinsky model (13) [18);
--- RNG model (14); dynamic eddy viscosity model (19) [21]; A fine direct simulation
[23].

model constants: C = 100 and Cs = 0.015625. For the dynamic eddy viscosity model, the
parameter 7 was chosen to be 2. The results in [21] suggested that this value was close to
an optimal choice for this problem.

Figure 4 presents a comparison of wall shear stress, 7, for the well-resolved DNS and
the LES using the three different SGS models. In the following, time is normalized by 6/U.,
velocities by U,, and lengths by §; moreover, U, =< T; >, and the resolved fluctuations are
defined as u =u; — U;.

Some remarks regarding the evolution of the wall shear stress in the DNS are in order.
There is no perceptible change in the wall shear stress during the stages dominated by linear
and secondary instability. It is only after the one-spike stage is underway that the wall
shear stress rises above its laminar value. During the later part of the transitiona! zone the
wall shear stress overshoots the turbulent value by roughly 20%. Although these results
were obtained for a highly idealized simulation of forced transition, this sort of evolution
of the wall shear stress is typical of natural transition in a low disturbance environment
and accurate prediction of this overshoot as well as the length of the transitional zone are
significant indicators of the usefulness of the LES for transition.

During the linear and secondary instability stages all simulations agree very well. Indeed,
the eddy viscosity in all three LES is negligible up to this point (¢ = 165). All three LES
exhibit a slightly premature rise in wall shear stress near ¢ = 175; this rise occurs earlier
with the scaled Smagorinsky and the RNG models than with the dynamic eddy viscosity
model. Both the scaled and the dynamic eddy viscosity models produce an overshoot in the
wall shear stress that agrees well with the actual overshoot and they also produce reasonable
agreement for the time-averaged wall shear stress in the fully turbulent state. The peak
wall shear stress computed with the scaled Smagorinsky model is within 3% of the DNS
prediction. The RNG model performs less well in both of these respects.
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Figure 5: Plane-averaged velocity. - Scaled Smagorinsky model (13) [18]; --- RNG model
(14); —— dynamic eddy viscosity model (19) [21]; A fine direct simulation [23]. (a) ¢ = 175;
(b) ¢ = 200; (c) t = 220.

In earlier work [18], the LES results for the scaled Smagorinsky model were compared
with both the well-resolved DNS results and with those of a coarse DNS which used the same
number of points as the LES, but no model. The coarse-grid DNS results were decidedly
inferior to those with the SGS model: the prediction of the peak wall stress from the coarse-
grid DNS, for example, was in error by approximately 12%.

In the transitional zone, the eddy viscosity begins to increase for all the models; for
example, in the calculation which used the scaled Smagorinsky model the eddy viscocity
at t = 220 is approximately 40% larger than in it is fully-developed turbulent flow. This
is due to the large velocity fluctuations that occur during laminar breakdown, which cause
oscillations of the large-scale strain rate tensor of greater amplitude than in turbulent flow.
Similar results were observed with all models.
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Figure 5 displays the mean flow at selected times as predicted by the DNS and the various
LES calculations. The LES resalts obtained with all models agree well with the DNS results.
Streamwise velocity fluctuations and Reynolds shear stress profiles are shown in F igures 6
and 7, respectively. Some differences between the predictions of the various models can be
observed here. For ¢ = 170 the scaled Smagorinsky mcdel is the least accurate; the errors are
caused primarily by its prediction of slightly premature transition. For ¢ < 200 the dynamic
eddy-viscosity model is significantly more accurate than the other two models studied. At
t = 220 the profiles of the rms fluctuations of u that are predicted by the LES calculations
are peakier than those calculated by the DNS; the level predicted by the RNG model is also
lower than the DNS resuit,

During the late stages of transition the Reynolds stresses can be several times larger
than their counterparts in turbulent flow, perhaps due to the highly intermittent character
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of the late stages of the transition process, which results in large velocity gradients and
increased turbulent kinetic energy production. The large-eddy simulations were carried out
into the turbulent regime, and their results were found to compare well with experimental
and numerical results [29,30]. Little difference was observed, in turbulent flow, between the
various models, with the dynamic eddy viscosity model giving slightly more accurate results
(especially in the near-wall regicn) than the other two.

When the RNG model was used for LES of boundary-layer transition {19], the eddy
viscosity was found to depend very much on the length scale employed. If the length scale
was changed by a factor of two due to increased mesh resolution, for example, the first term
in the argument of the ramp function in Eq. (14) would change by a factor of sixteen. This
may have very significant effects, especially at the early stages of transition, in which the

14




model is switched on only locally and part of the time. If too coarse a mesh was used,
moreover, Eq. (14) yielded a non-zero eddy viscosity even in laminar flow.

As mentioned earlier, the dynamic eddy viscosity is capable of predicting backscatter.
With the formulation presented here, backscatter is not localized: if it occurs, it occurs
over an entire plane. In their calculation Germano and coworkers [21] observed backscatter
(evidenced by a negative eddy viscosity) during transition (for ¢ < 185).

" The LES of channel flow transition reported here were nearly two orders of magnitude
less expensive (in terms of CPU time) than the highly-resolved DNS with which they were
compared. Thus, LES of transitional flow offers a realistic prospect of producing important
information for RANS transition models in more complex geometries and for compressible
flow.

6 Conclusions

The behavior of the subgrid-scale stresses has been studied a priori. It was found that,
during transition, backscatter (i.e., energy flow from small to large scales) is significant.
The standard Smagorinsky SGS stress model, which cannot account for this phenomenon
is, however, capable of predicting transition to turbulence fairly accurately, as long as the
subgrid-scale dissipation predicted by the model is decreased by the introduction of some
form of intermittency function.

Alternatively, a model based on renormalization group theory has been used which does
not require an ad hoc intermittency function. With this model the SGS stresses are essentially
zero throughout the linear and early nonlinear stages of transition. This model also is
absolutely dissipative, but still captures most of the physic . features of transition. Previous
experience with this model, however, has shown it to be quite grid-dependent.

Finally, a subgrid-scale model which is not strictly dissipative was used. This model gives
more accurate prediction of mean velocity and Reynolds stresses than the others, indicating
that use of models capable of predicting backscatter may be beneficial for the study of
laminar-turbulent transition.
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reflected in the SGS turbulent energy, when the grid resolution i:
not sufficient. Because of the wrong choice of the energy scale ir
the Smagorinsky model, Cs had to be adjusted depending on the flow.
[t may be possible that Cv becomes universal independent on the flow,
but Cs may not be sn.

4. 'A posteriori’' test of the proposed model

In this section, numerical results of LES when the SGS model
proposed in the previous section (eqs.(14) and (17)) ts incorporated
into the actual computation, are briefly presented. Re is chosen
equal to 1280, and 128, 129 and 128 grid points are employed in the
t,y,z directions, respectively. Mode!l constant Cy in eq.(14) 1is
selected equal to 0.125, and no damping function is included.

Fig.7 displays the mean velocity profile. The von karman
constant (X=0.4) and another constant (B=5.0) are in a good agreement
with experimental measurement.® GS turbulence intensities of
streamwise and normal components are shown in Figs.8 and 9,
respectively. Note that the contributions from the Bardina mode!
are included in the intensities. For a4 comparison, experimental
measurement?”’ and numerical results® obtained by wusing the
Smagorinsky model combined with the Van Driest damping function
are included in the figures. Overall agreement with experimental
measurement is good. The peak positions of turbulence intensities
using the proposed model are closer to the wall than in the previous
result, confirming the validity of the presented model.

5. Summary and discussions

A new subgrid scale Reynolds stress model is proposed. The
prominent feature of the proposed model lies in the incorporation
of 3rd order terms in the anisotropic representation of SGS Reynolds
stresses to the eddy viscosity, choosing the normal shear stress as
the energy scale. In the present model, previously found discrepancy
in the optimized values for the Smagorinsky model constant can be
explained, and the use of the empirical damping functions can be
avoided, while maintaining a higher correlation with the DNS data
than in using the Smagorinsky model. Unlike commonly used damping
function of Van Driest type which globally reduces the eddy viscosity
magnitude at the same level of Y., this model can make a local
reduction of the magnitude. The relationship between the Leonard
term, the Bardina model and the 2nd order AR is pointed out. The
validity of the proposed model is confirmed in ’'a posteriori’ test
Although the normal shear stress can be almost uniquely chosen in
plane channel flow, further refinement is needed for its proper
selection in complex geometry, such as in a corner flow of backward
facing step, which will be left to the future work.
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Extended Abstract

LES IN GEOPHYSICAL TURBULENCE PARAMETERIZATION
J. C. Wyngaard and C.-H. Moeng

National Center for Atmospheric Research*®
Boulder, Colorado 80307

Numerical models of the ocean and atmosphere on virtually all scales require
parameterizations of turbulence effects. These effects are not confined to the oceanic
and atmospheric boundary layers, but occur in clouds and in free flows (e.g., “clear-
air turbulence”) as well. The state of this parameterization science has not been
particularly healthy but is improving, thanks in part to turbulence simulation.

We have begun a planetary boundary layer (PBL) model evaluation project at
NCAR. Sanctioned by the World Climate Research Program, its focus is the PBL
models used within general circulation codes. We have surveyed virtually all approaches
to PBL modeling used to date and have separated them into a half-dozen general
categories. We have begun defining and coding a representative version of each type.
We will then evaluate the performance of each “generic” model against a data base built
in part from LES results.

This use of LES is prompted by the rather different situations in geophysics and
engineering with regard to direct measurements of flow structure. Geophysical flows are
much less accessible to experiment—and are likely to remain so for the forseeable future.
Thus, LES can play a very important role in generating reliable PBL “data bases” from
which parameterizations are developed.

In this talk we focus on the convective PBL, first studied by Deardorff in the early
1970s and revisited by others in the mid-1980s. We review the strong and weak points of
LES in PBL applications. We discuss other approaches to PBL modeling, and indicate
why LES could be characterized as “the worst form of PBL modeling—except for all the
others that have been tried.”

We then discuss some of the research applications for LES of the convective PBL.
We cover the “top-down, bottom-up” diffusion studies of Moeng, Brost, and Wyngaard,
including the generalized mixed-layer similarity scaling that they have inspired. An
interesting parameterization of these results, which stems from Lumley’s 1978 attempt
to generalize the eddy-diffusion constitutive equation, is discussed. We show how LES
has given the first good insight into the fidelity of contemporary second-order closures
for pressure covariances, third moments, and dissipation rates in the convective PBL.

We survey the prospects for LES studies of other important PBL states and
conclude with an assessment of the feasibility of treating cumulus cloud systems, whose
transport is important for global dynainics and trace constituent balances.

* The National Center for Atmospheric Research is sponsored by the National Science
Foundation.
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Abstract

Thermal convection of a Boussinesq fluid in a layer confined between two
infinite horizontal walls is investigated by direct numerical simulation (DNS)
and bv large eddy simulation (LES) for zero horizontal mean motion. The
lower surface height varies sinusoidally in one direction with an amplitude
J up to 0.15 H and a wavelength 1 of 1.0 H to 4.0 H (inclination up to 43%) in
different cases, where H is the mean fluid layer height. Constant heat flux
is prescribed at the lower surface of the initially resting and isothermal fluid
layer. In the LES, the surface is treated as rough surface (z/H = 1-107%)
using the Monin-Obuchow relationships. At the flat top an adiabatic fric-
tionless boundary-condition is applied which approximates a strong cap-
ping inversion of an atmospheric convective boundary layer. In both hori-
zontal directions, the model domain extends over the same length (from 4
to 8 H) with periodic lateral boundary conditions.

We compare DNS of moderate turbulence (Reynolds number based on H
and on the convective velocity is 100, Prandtl number is 0.7) with LES of the
fully developed turbulent state in terms of turbulence statistics and char-
acteristic large-scale motion-structures. The LES results for a flat surface
agree very well with the measurements of Adrian et al. (1986). The gross
features of the flow statistic such as profiles of turbulence variances and
fluxes are found to be not very sensitive to the variations of wavelength,
amplitude, domain-size and resolution and even the model type (DNS or
LES) whereas details of the flow structure are changed considerably. The
LES for infinite Reynolds number shows more turbulent structures and
somewhat larger horizontal scales than the DNS for the finite Reynolds
number. To a weak degree, the orography enforces rolls both with axis
perpendicular and parallel to the wave crests and with horizontal spacings
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between the axis of about 2 to 4 H. The orography has the largest effect for
A =4H in the LES and for 1 =2H in the DNS. The results do not change
much when the size of the computational domain is doubled in both hori-
zontal directions. Most of the moticn energy is contained in the large-scale
structures and these structures are persistent in time over periods of the
order five convective time scales or longer. The time scales are consider-
ably larger over wavy terrain than over flat surfaces.
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1. Introduction

Much is known about thermal convection over ideally homogeneous hori-
zonta! surfaces (Busse, 1978, Stull, 1988). Land surfaces are, however,
rarely homogeneous. They are often undulated and form hiily terrain. Even
when the amplitude of such hilly terrain stays below the mean height of the
atmospheric boundary layer, one might expect that the topography has
appreciable effect on the flow structure. In this paper. we investigate the
effect of terrain on turbulent convection within a boundary layer of finite
depth over a wavy surface with zero mean horizontal mction.

In the atmosphere, a conveciive boundary layer (CBL) forms between the
surface and an inversion which is topped by stably stratified air (Stull,
1988). The properties of such a CBL depend at least weakly on the effective
Brunt-Vaisala frequency of the stable layer above the turbulent CBL and the
time scale of convective motions within the CBL. Moreover, the CBL is
non-steady because of growing boundary layer depth; it is however quasi
steady in the sense that normaiized turtuience profiles become stationary.
In this study, we limit the boundary layer by an adiabatic free-slip rigid wall.
Such a wall mimics the properties of a very strong temperature inversion
above the CBL. For constant surface heat flux such a layer approaches a
state in which all statistics of motions approach a strictly steady state. Only
the mean temperature remains to increase linearly with time but this does
not matter because the flow is driven solely by temperature differences.
Hence, the parameter space for this problem is smaller than for the CBL
and this property is attractive because of the large number of additional
parameters which enter the problem due to the wavy surface. For the same
reason we concentrate this study on the fully ‘urbulent case of infinite
Reynolds or Rayleigh number. Only for comparisons we also show resuits
of DNS for a finite Reynolds number which is about 9 times the critica! for
the onset of convection over flat surfaces (Re.., = (Rac./Pr?)'", Rag., = 720,
Krettenauer and Schumann, 1983). The simulations over a flat surface can
be compared with the laboratory